Troubleshooting Extrusion Problems in Coextrusion Film Applications

By Dr. Karen Xiao

Presented by Philip Kwok Brampton Engineering

Common issues

- Haze lines
- Melt stability
- Gels
- Interfacial instability
- Poor gauge

Contributing Factors Haze Lines

Processing temperatures

- Temperature gradient
- Screw and barrel conditions
- Die design

Considerations:Melt stability

- Resin selections
- Extruder sizing
- Product layflat and blowup ratios

Gels

Which layer(s) exhibit gels?
Resin contamination
Screw and die design

Gels - Unmelts

Resin sources
Processing temperatures
Resin blend compatibility
Screw design

Gels - Degraded Gels

Resin contamination
Processing temperatures
Screw and barrel conditions

Interfacial instability

Interfacial instability

Wave type – elongational viscosity differences between layers

Interface instability

- Identify the interface problem –possibly more than one location
- Change only one parameter in one layer at a time
- Look for layer percentage change and a temperature change

Poor Gauge

- Temperatures and outputs
- Screw and barrel conditions
- Die design
- Air ring and local ambient temperature

Case Study: 7 layer blown film line

- Stacked pancake die inner layer at bottom of stack, outer layer at top of stack
- Trouble free operation for a few years
- Routine die cleaning
- Sudden appearance carbon buildup on die, poor gauge – all after die cleaning

Information Required

- Recipe change? New structures?
- What materials in each layer?
- Layer percentage, output
- Processing temperatures of each layer
 - setpoints and actuals if available
- Screw RPM of each layer
- Significant events –e.g. power outage, extruder failure

Assessment/Evaluation

 Calculate shear rates and shear stresses
 material flow, potential degradatic

 material flow, potential degradation location

- premature hardware failure, e.g. screw and barrel wear or heater band failure

Problem identified

New recipe

Output rate calculations

• Output in one layer too low

Shear rates 4-6sec⁻¹

Residence time for that layer too long

- Carbon build up
- Change in flow behaviour

Action:Results

Increase output of specific layer

- Better gauge uniformity
- Faster changeover times
- Reduced downtime less cleaning time

Common issues in coextrusion

	Processing Temperatures	Screw and Barrel Conditions	Resin Selection	Die Design	Screw Design	Air Ring & IBC Conditions
Gels	X	X	X	X	Х	
Unmelts	X		X	and the second	X	
Gauge	X	X		X		X
Interfacial Instability	X	13	X	X		
Haze Lines	X	X	X	X	X	
Melt Stability	X	X	X	A law	AIR I	X

Thank You

PRESENTED BY Philip Kwok Vice President Brampton Engineering www.be-ca.com