

LignoBoost Kraft Lignin

A New Renewable Fuel and a Valuable Fuel Additive

Per Tomani, Innventia

Co-authors:

Peter Axegård, Niklas Berglin, Daniel Nordgren, Innventia Jonas Berghel, Karlstad University

Outline

- Background Introduction
- Kraft lignin process & product
- Trials in different combustion applications
- Summary

Driving forces

Increased pulp production

- By reduced thermal load in the recovery boiler

- Reduced oil consumption Go Green
 - Replacement of fossil fuel in the lime kiln with lignin

• Exporting revenue

 Excess energy can be exported from market pulp mills to external users - energy, chemicals & materials

jan-02 jan-03 jan-04 jan-05 jan-06 jan-07 jan-08 jan-09 jan-10 jan-11

The LignoBoost process

Kraft lignin properties & potential use?

Examples of potential products from kraft lignin

Pressfilter from Metso in our

Demo plant in Bäckhammar, Sweden

Process: comments & experiences

- First part of the LignoBoost-concept:
 - Commercial operation 1994 to 2005.
 - Product: 5-15% ash and 35% DS (waterslurry).
 - Continuous operation, one yearly maintenance stop.
 - Production of lignin on a level of 6 000 tonnes/year.

Process: comments & experiences

- The second part of the LignoBoost-concept:
 - Demonstration by Innventia on a level of 4 000 tonnes/year
 - Product: 0.02-1 % ash, 65-70+% DS
 - Operated 5 days a week 24 hours/day 2007-2008. Now focused on R&D.
- The LignoBoost-concept have no new equipment but a key component press filters:
 - Well-proven equipment in the mineral industry.
 Fully automatic equipment.

Kraft lignin in our demonstration plant

Standard (bulk) lignin

HHV (dry ash free): 26-27 MJ/kg However 30-35% moisture

95-98 % Lignin Hydrophobic

C: 63 - 66 % H: 5.7 - 6.2 % O: 26 - 27.5 % S: 2 - 3 % N: 0.1 - 0.2 %

Ash (dry): 0.02 - 1 %

Normal operation Ash (dry): 0.5-0.8 % Na: 120 - 230 g/kg ash K: 25 - 80 g/kg ash

LignoBoost kraft lignin fuel characteristics

		Lignin	Coal	Wood chips	Bark pellets
Moisture	%	30-40	9	50	10,3
Ash	%	0,02-1	11,7	2-3	3,6
HHV	MJ/kg	26-27	29,8	20	21
LHV	MJ/kg	17-19	25,9	7,7	17,7
Sulphur, S	% db	2-3	0,4	0,05	0,04
Chloride, Cl	%	<0,01	0,04	0,03	0,02
Bulk density	kg/m3	500-600***	800	200-300	550-700

***Moist filter cakes. Dry lignin powder has a bulkdensity of 630-720 kg/m³

Successful energy applications tested by Innventia

- Lime kiln
- Co-firing with bio-fuels
- Co-firing with coal
- Kraft lignin pellets (100%) & additive (1-10%) in fuel pellets
- Kraft lignin powder suspended in oils

Full scale trial with kraft lignin as fuel in a TAPPI

lime kiln at the Södra Cell Mönsterås pulp mill

- April 15-17, 2008
- 275 tpd lime kiln
- 37 tonnes fired
- 32 hours
- 50 100 % oil replacement

International Bioenergy & Bioproducts Conference March 14-16, 2011 | Atlanta GA USA Reference: Tappi Int .Chem. Rec. Conf. 2010, Williamsburg, USA

Kraft lignin fuel in lime kilns

Summary

- Stable and continuous operation of a lime kiln when lignin is used as fuel.
- Standard powder burners and feeding equipment when firing lignin - OK.
- No sign of lignin stuck at the burner or in supply pipe system.
- The temperature levels in the kiln are of the same order of magnitude when firing lignin as when firing oil or wood powder.
- OK to keep the O₂-level at normal values at the combustion of lignin, i.e. same as during bark and oil firing.
- Lime quality: not effected
- Increased SO₂ emission between 85-100% (kiln specific level?)

Co-firing of kraft lignin & bark in a CFB

- Co-firing of lignin and bark in a12 MW research CFBboiler at Chalmers University of Technology
- 3 tonnes of the lignin limited the trial to 3-days.
- The objectives were to study:
 - Fuel feeding properties in Chalmers feeding system
 - Effects on combustion conditions (CO, NOx, temp, etc)
 - SO₂-emissions
 - SO₂-reduction with limestone addition
 - Deposits on tubes
 - Effects on sintering properties of the bed material

Reference: Tappi Engineering, Pulping & Environmental Conf., Portland, Oregon, Aug 25-27, 2008

SO₂ capture by bark ash and

limestone addition

Co-firing in a CFB Full scale

April 2010

Co-firing in a CFB Summary

- Feeding works well without any clogging problems
- A stable and continuous combustion is fully possible
- Sulphur content in kraft lignin can be used to reduce the alkali choride content in the deposits, thus reducing the risk for sticky deposits and high temperature corrosion
- Calcium in bark ash captured sulphur.
- Conventional sulphur capture with addition of limestone to the bed was also demonstrated.
- Kraft lignin addition had no measureble effect on the sintering properties of the bed material

Coal fired PFBC plant in Stockholm (Värtaverket)

(Pressurised Fluidised Bed Combined Cycle)

Co-firing coal and kraft lignin Demonstration scope

• Kraft lignin transported 300 km by trucks (40 ton lignin/truck) from the LignoBoost demo plant to Stockholm.

- The lignin was intermediate stored up to a year in 10 ton containers. No problems with biological activity or degradation.
- 4 000 ton of lignin 60 % DS (24 GWh) was co-fired with coal during 4 campaigns - totally 13 weeks (8 weeks continuous operation). The energy mix of lignin was 2 -15 %.
- Kraft lignin was added to coal, dolomite and water. This paste was pumped 300 m to the PFBC and injected with existing six burners

Results co-firing coal & kraft lignin

- The fuel injection into the boiler and fluidized bed worked well and the distribution of fuel in the bed was very good.
- Compared to coal firing the centre of combustion shifted downwards due to the high reactivity of the lignin.
- No appeared changes in NO_x, N₂O, CO and HCI emissions were observed. The sulphur emission increased from 1-3 mgS/MJ to 12-13 mgS/MJ when co-firing with 15 % lignin (energy basis)
- Fortum Värme expect at least 30% coal substitution with optimal designed equipment.

International Bioenergy & Bioproducts Conference March 14-16, 2011 | Atlanta GA USA Reference: Bioenergy 2009, Jyväskylä, Finland, 31 Aug- 4 Sept, 2009

Pellets, 100 % kraft lignin

Small and large scale pilot units from

Amandus Kahl

- we use the softening properties

Evaluation by single pellet pressings

Evaluation by single pellet pressings

March 14-16, 2011 Atlanta GA USA

Pilot scale - pelletizing of fresh spruce

Kraft lignin pellets &

kraft lignin as additive

Summary

- Lignin can be pelletized when needed.
 - Normal energy input is needed
 - Correct handling system is important
- Moisture is an important softening agent
- Addition of lignin to biofuel pellets improves the strength and energy density
- Lignin is hydrophobic pellets have good water resistance properties. Also other good storage properties

LignoBoost lignin mixed with fuel oil

30-50 % lignin (energy-%) in fossil fuel oil 5

We have also sucessfully mixed lignin with liquid biofuels like tall oil, tall oil pitch & glycerine from bio-diesel production

Summary

- Secure a continuous bulk production & use of lignin
- Substitute fossil fuel oil sets the lignin value & should include potential green credits
- Do not forget applications where washed, moist lignin is accepted.
- Next generation applications: carbon fibers, etc

Successful demonstrations (a short term perspective):

- Moist lignin cakes co-combusted with bio-fuels (bark)
- Moist lignin cakes co-combusted with coal
- Moist lignin as additive in biofuel pellets (wood, straw etc)
- Dry lignin powder fuel in lime kilns/cement kilns
- Lignin pellets or new combinations
- Lignin slurries with fuel oil, tall oil, tall oil pitch, glycerine etc

Kraft Lignin Impregnated Pulp Fibres

Thank you for your attention!

Lignin removal

March 14-16, 2011 | Atlanta GA USA

Biorefinery activities at Innventia

Energy situation in a pulp mill

Summary: General steam balance (2003)

Prod: Recover	ry boiler: 15.2 G	J/AD1			
Consumed	Average mill	BAT			
Evaporation:	5.1 GJ/ADT	4.0			
Fibre line:	4.9 GJ/ADT	3.2			
Pulp drying:	3.0 GJ/ADT	2.2			
Othora		$\cap \cap$			

Others:

Total need:

International Bioenergy & Bioproducts Conference March 14-16, 2011 | Atlanta GA USA

Reference: Johansson, M., "Heat transfer and Hydrodynamics in Falling film Evaporation of Black Liquor", Chalmers University of Technology, 2008. KAM, report A100, 2003

1.0 GJ/ADT

14 GJ/ADT

0.0

10.8

LignoBoost Demonstration plant

Samples from the first year of operation

Ash content in the final kraft lignin product, %

	Sample	Example		Median	Rai	nge	No		
					Min	Max			
	Fuel content (weight-%)					IAPPI			
	Moisture	29,3		32,3	29,3	40,0	3	peopre resources solutions	
	Ash(dry)	1,4		1,0	0,2	1,4	5		
	Heat value (MJ/kg)								
	HHV (dry ashfree)	26	6,7	27,1	26,6	27,3	5		
	HHV (moist)*	18	3,6	18,2	15,9	18,6	3		
	LHV (dry ashfree)	25	5,4	25,9	25,3	26,0	5		
	LHV (moist)*	16	5,9	16,6	14,2	16,9	3		
		Elementary analysis (% dry ashfree)							
	C (carbon)	63	3,6	65,1	63,6	66,2	5		
	H (hydrogen)	6	,2	5,8	5,7	6,2	5		
	O (oxygen)	27	7,5	26,1	25,9	27,5	5		
	S (sulphur)	2,	54	2,5	1,8	3,2	5		
	N (nitrogen)	0,	15	0,1	0,1	0,2	5		
	CI (chlorine)	0,	01	0,01	0,01	0,01	2		
	Ash analysis								
		mg/kg DS	mg/kg ash	n	ng/kg ash				
	Al (aluminum)	364	26 000	17 824	7 857	34 500	4		
	As (arsenik)			15	14	16	2		
	Ba (barium)	31	2 200	2 000	499	2 200	3		
	Ca (calcium)	1 085	77 500	4 037	2 000	77 500	4		
	Cd (cadmium)			10	9	11	2		
	Co (cobolt)			10	8	11	2		
	Cr (chromium)			257	108	500	3		
	Cu (cupper)			157	59	800	3		
	Fe (iron)	270	19 300	4 036	1 250	19 300	3		
	Hg (mercury)			2	1	4	2		
	K (potassium)	543	38 800	38 800	24 000	76 154	5		
	Mg (magnesium)	116	8 300	1 996	1 700	8 300	3		
	Mn (manganese)	71	5 100	2 835	900	5 100	3		
	Mo (molybdenium)			484	353	614	2		
	Na (sodium)	1 666	119 000	151 500	119 000	227 152	5		
	Ni (nickel))			69	59	79	2		
	P (phosphorous)	66	4 700	2 484	269	4 700	2		
	Pb (lead)			16	11	21	2	4	
	Sb (antimony)							4	
	Si (silica)	979	69 900	13 071	10 536	69 900	4	4	
	Ti (titanium)	25	1 800	969	138	1 800	2	4	
International Bioener	TI (thallium)					0		4	
March 14 16 2011	V (vanadium)			820	769	871	2	4	
March 14-10, 2011	Zn (zinc)			500	443	954	3	J	

One driving force to avoid fossil fuels in lime kins

Use of 50 liter oil (13.2 gallon) in the lime kiln/ADt pulp

- *Example:* In a pulp mill producing 350 000 ADt/year, without a production increase:
 - means 110 000 bbl / year (17 500 m3 / year)
 - corresponds to 25 000 tonnes of lignin on energy basis

Avoided oil cost* in the lime kiln, US\$/year

Typical installation

- 2 or 3 VPA pressure filters
- Precipitation equipment
 - CO₂ storage tanks optional
- Process pumps and tanks

- Heat exchangers
- Scrubber, vacuum pump and fan
- Belt conveyors

