

The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion

> **Charles Churchman, P.E. Stephanie England, E.I.T. International Applied Engineering, Inc. Marietta, Georgia 30062 (770) 977-4248 Cgc@iaeinc.com TAPPI ConferenceOctober 15, 2009**

Overview

- \bullet **Purpose: Determine Effects of Increased Pressure on the reaction rates of Biomass Pyrolysis & Combustion**
- \bullet **Objective: Reduce the fixed capital costs for biofuels plants by increasing their operating pressures**
- \bullet **Advantages/Disadvantages of Increased Pressure Effects**
- \bullet **Combustion Reaction Kinetics vs. Pyrolysis Reaction Kinetics**
- \bullet **Unusual Biomass Characteristics which affect the study of pressure on combustion and pyrolysis kinetics**
- \bullet **The potential reduction in equipment sizes with currently known information**
- \bullet **Conclusions**

Definitions

- \bullet *Combustion* – the reaction of oxygen with other materials, usually organic, with the evolution of light and heat, and the production of carbon dioxide and water.
- \bullet *Pyrolysis* – the decomposition of organic materials due to heating in the absence of oxygen
- \bullet *Kinetics* – the thermodynamic field which studies the rate of chemical reactions
- \bullet *Aspect ratio* – surface area to volume ratio of a particle undergoing combustion or pyrolysis
- \bullet *Char*- the 89-90% carbon structure left after evolution of lignins and other volatiles during pyrolysis; a series of ruptured and broken cellular tubes made up of the wood grain
- \bullet *Half life* – time it takes for ½ of a biomass sample to be combusted or pyrolyzed.

Objective

 $\boldsymbol{\varLambda}$

- \bullet Commercial plants should be able to produce drop-in replacement biofuels in a cost range around \$ 60/bbl, assuming feedstock costs in the \$ 30-50/dry ton range
- \bullet A common cost savings technique in the oil patch and chemical industries for gas-phase systems is to raise the pressure to reduce the size of vessels and piping.
	- Vessels and piping can run 30-40% of the fixed capital investment
	- Running at 10 x atmospheric pressure, at a straightforward ratio, the volumes required drop nearly by a factor of ten. (But wait – there's more!)
- **Reduce Fixed Capital Costs by at least 30%**

 \bullet \bullet High pressure \rightarrow Equipment volume reduction

Increased Reaction Rates also Reduce Reactor Sizes

- \bullet Reactor sizing is a function of reaction rate, residence time, and approach to equilibrium. Pyrolysis reactions do not reach equilibrium quickly in the gas phase.
- \bullet At the same pressure, a faster reaction rate requires less residence time, and thus a smaller vessel.
- \bullet Thus, a faster reaction rate resulting from increased pressure has two multiplying factors to further reduce equipment sizes:
	- Higher pressure by volume reduction
	- Lower residence times by faster reaction rates
- The combination reduces the volume by MORE than the pressure ratio.

Another Pressurization Advantage

7

Hydrogen impact on compression costs

- \bullet Biomass synfuels contain lots of hydrogen, anywhere from 15-50%.
- Hydrogen compressors are particularly expensive, due to the low density of hydrogen
- \bullet Hydrogen leakage from rotating equipment with seals can be a problem, and hydrogen flames are invisible in daylight
- \bullet The parasitic electrical load for compression is very high; it can run 10% of the produced electrical load.

IAB Other Pressurization Advantages

- \bullet Smaller equipment sizes mean smaller surface areas for thermal heat losses
- \bullet Lower thermal heat losses yield higher internal reaction temperatures
- \bullet Higher reaction temperatures favor lower tar formation levels.
- \bullet Easier gas cleanup via larger allowable pressure drops in cyclones, filters and scrubbers
- \bullet Lower tar formation at higher pressures
- \bullet More effect latent heat recovery from water condensed from syngas

UAE Pressurization Disadvantages

- Four main categories:
	- Mechanical Problems with equipment at elevated pressure
	- Less-than-linear reactivity increase due to pressure
	- Increased emissions
	- Possible increased methane concentrations in the syngas

(IAE) Feed System Challenges

- Pyrolysis needs to remove the void space air between the biomass particles – backflush with nitrogen or steam needed.
- \bullet Nitrogen expensive, but steam has its problems:
	- Terpenes in biomass flash off with pressurized steam
	- Increased volatile losses w/increasing pressure
	- **Environmental impacts for VOCs**

- \bullet Pressure sealing
	- \bullet High Maintenance
	- \bullet **Expensive**

(IAE)

Status of pyrolysis kinetics studies

- \bullet Not very much work has been done on the effects of pressure on pyrolysis kinetics
- \bullet Much more has been done on the effect of pressure on combustion kinetics
- \bullet A review of the effect of pressure on combustion kinetics can help understand what the potential impact is on pyrolysis kinetics
- \bullet More research and work on pyrolysis kinetics is warranted, and some of it will be starting soon.

UAE New tools to study problem

- \bullet New Dimensionless numbers
	- Old tools included Reynolds number, Froude number,Prandlt number, Schmidt number

• New tools include numbers which provide dimensionless correlations of the relative effects of heat transfer and reaction kinetics

• Some of these are: Prater Number, Biot Number, Weisz Modulus, Thiele Modulus, and Effectiveness Factor

•Newest CFD software combines particle gas phase fluid mechanics with reaction kinetics

Biomass Characteristics

\bullet Anisotropic

• Affects combustion, pyrolysis and modeling parameters

Wood Chip Undergoing Combustion

Side View of chip

16

Fireside Chat

- \bullet This winter watch a fire in a fireplace for an education in combustion and pyrolysis kinetics.
- \bullet The orange flames in the fireplace are closer to pyrolysis temperatures than combustion temperatures. The cracking and popping are vapors exploding out of tubules.
- \bullet Watch a wood chip with an open end - when heated - releases a long yellow flame of tar-laden, yellow flame.
- \bullet Or get an oxy-acetylene torch, and just turn on the acetylene, then slowly turn on the oxygen.
- \bullet The smoky yellow flame will turn bright white, then get blue translucent as the incandescent carbon combusts.

Rate Limiting

From: Porteira et al, Combustion of Large Particles of Densified From: Porteira et al, Combustion of Large Particles of Densified
Wood, Energy & Fuels, Vol 21,No. 6, 2007, pg. 3157

Pressure Effects on Combustion

 \bullet IAE's empirical observations:

- \bullet Results are expected
- \bullet Higher temperature indicates faster reaction rate

$$
\dot{Q} = kT^4 \qquad r \propto P_{O_2}^{0.5}
$$

Pressure Effects on NOx formation rates

High pressure combustion may dramatically increase NOx formation

20

(IAE) Pressure effect on combustion

 \bullet Published results indicate that the pressure effect on combustion kinetics is somewhat less than linear, and in some cases is close to the square root of the pressure:

$$
R = k(P_{O2})^{0.53-0.78}
$$

• Where:

 \bullet

- \bullet R = reaction rate
- \bullet K = constant
- \bullet P_{O2}= partial pressure of oxygen

(IAE) 1992 Gravel Bed Combustion Study

 $\mathsf{m}_{\text{wood}}^{} = 0.95 \; \mathsf{A}_{\text{bed}}^{} \mathsf{P}^{0.72} \; \mathsf{T}^{1.03} \; \text{(air/fuel)}^{\text{-}0.81} \text{(100-%moisture)}^{\text{-}0.46}$

Where the units were:

M_{wood} = kg/hr A_{bed} = square meters $P = \text{atms}$ T = degrees Kelvin $Air = kg/hr$ $Fuel = kg/hr$ Moisture = as-received basis

22"Development of a gravel bed combustor for a solid fueled gas turbine", Ragland, et al, U of Wisconsin ME Dept., June 1992, DOE Contract No. DE-GF02- 85E40735

Pyrolysis kinetics versus combustion kinetics

- \bullet Pyrolysis occurs at much lower temperatures than combustion
	- Half Life of wood chips is much longer than in combustion, fractions of a second instead of milliseconds
	- Thermal driving force is lower, since the temperatures are lower
- \bullet • More time to "distill" off the tars
- \bullet Gas phase reactions slower, less cracking of tars, and reactions do not reach equilibrium
- \bullet No free oxygen to accelerate char oxidation

CAB Pyrolysis versus combustion

- \bullet Reaction rates are slower
- \bullet More tars are formed in pyrolysis
- \bullet More carbon remains in the char in pyrolysis
- \bullet Pyrolysis equipment needs to be larger for the same throughput.
- \bullet NO_x emissions lower, since there is no free oxygen

Low Pressure Pyrolysis Char High Pressure Pyrolysis Char

High pore surface area(SA) Smaller Particle

Low pore SA: Gas diffusion Larger particle: Conduction

High pressure pyrolysis \Rightarrow slower char reactivity

26

Potential Equipment Volume Reduction Possible

Reactor: Assume operating pressure of 300 psia, versus 1 atm.

Volume reduction due to pressure change 95%

Assume reaction rate increase is $20^{0.6}$ = 6 x more!

Total volume change $20 \times 6 = 120$

 $1/120 = 0.8\%$. Volume of the reactor $\leq 1\%$ that at 1 atm.

Piping : diameter reduction due to volume decrease~ $(300/15)$ ^{0.5}= 4.5; assume pipe dia. req. ¼ the 1 atm. Case

Footprint Reduction: Unfortunately, as yet…………to be determined

Pyrolysis Kinetics

- \bullet Not well understood area
	- \bullet Equilibrium unknown as a function of time; product gases not at equilibrium
	- \bullet Prediction of product gas composition and reactor sizing needs development
- \bullet Ongoing research on pressurized pyrolysis: Georgia Tech – pyrolysis research in operational 80 atm reactor funded by DOE(NREL).

Combustion Kinetics

- \bullet Some good data available, understanding of the full implications still have a fundamental problem with the measurement and prediction of kinetic rate equations at high pressure and temperature
- NO_x formation rates at high pressure problematic.

Conclusions

Pressurization Advantages:

- \bullet Eliminates downstream pressurization capital and operating costs(compressors)
- \bullet Huge Capital cost reduction with equipment size reduction due to pressure and faster kinetics

\bullet Latent Heat recovery at higher temperatures

Disadvantages:

- Pressurized feed system
- \bullet Decreased char reactivity
- Not well understood effect on reaction rate
- Expensive pressure sealing, particularly with respect to hydrogen.

Conclusion: Benefits of pressurization still outweigh negative impacts; further research is still desperately needed