PIRM – May, 2010

7 Steps to Optimize Lubrication Practices for Maximum Reliability Support

Mike Johnson, Principal Consultant CMRP, CLS, MLT, MLA

Contact Details

Mike Johnson, CMRP, CLS, MLTII, MLAII President, AMRRI

Mike.Johnson@PrecisionLubrication.com

3978 E. McEwen Drive Franklin, Tn., 37067 615.771.6030 – Tel and Fax 615.513.3000 - Cellular

About the Course Presenter

24 years – focus on reliability centered lubrication practices and program development

- □ Author of Chapter 33 'Lubrication Program Development' for the CRC Tribology and Lubrication Engineering Handbook, 2nd Edition
- Author of 45 technical and industry articles published by TAPPI, ILMA, Reliable Plant, Practicing Oil Analysis, Machinery Lubrication STLE, and Uptime Magazine
- □ Contributing Editor for ICML MLT1 and MLT2 test development.
- □ SMRP Certified Maintenance and Reliability Professional
- STLE Certified Lubrication Specialist
- □ Creator of 'Lubrication Boot Camp' six-week Immersion Training program.
- Popular presenter of workshops, public and private seminars, and other industry events. College Instructor and Developer: Introduction to Machinery Lubrication
- Guest writer for STLE 'Machine Lubrication Best Practices' 24 Article Series (in development)

Available Reliability Services

- Auditing: The service includes mapping out lubrication programs requirements from incoming material requirements, storage, handling, equipment requirements, and eventually disposal.
- Consulting: Specialists in lubrication, PdM program implementation, and root cause analysis. Trico consultants provide practical solutions for improving equipment reliability.
- Training: On-site or off-site training seminars addressing the topic of "lubrication management." These training sessions are intended to help organizations implement effective preventative maintenance programs and improve equipment reliability.

Available Reliability Services

- Lubricant Monitoring: Oil samples are taken and analyzed as a preventative maintenance tool and/or diagnostic means to determine possible causes of equipment failure.
- Components Solutions: Lubrication management products to keep machines running productively.
- Contract Lubrication Program: Fully contracted lubricant design, selection, application, condition control, sampling and analysis, Root Cause mapping and correction, program effectiveness reporting.
- Contract Lubrication Management: This service mirrors the fully contracted approach except that the labor is provided by the client or a third party labor resource. All management functions are provided as though it is a captive program.

3 Q's to Ponder for Starters

- 1. What is meant by Total Cost of Plant Lubrication?
- 2. What influences the Total Cost of Plant Lubrication at our plant?
- 3. How big of a return would you need to make Precision Lubrication Development one of your reliability engineer's Key Performance Objectives in 2010 - 2011?

Dime for a Dollar – Precision Lubrication

There is a significant cost savings that can be accomplished through optimized plant lubrication!

It is being done by others!

Dime for a Dollar – on Who's Authority?

What is the basis for this position?

1. Objective multi-environment evidence

2. Subjective singe-environment evidence

Dime for a Dollar – Show me the Money!

Short List - What's RIPE for Improvement – Low Hanging Fruit!!

1. Sump Contamination Control

- At the time of machine installation
- During and following lubricant installation ongoing activity

2. Product Selection

- Improving the match-up of lubricant performance property with machine and labor management objectives
 - Viscometric properties
 - Surface protection technologies
 - Long term lubricant Stability

Dime for a Dollar – Show me the Money

Short List - What's RIPE for Improvement?

3. Man Hours per Year

- Improved Longevity in lubricants see #2
- Improved delivery efficiency
 - Multipoint systems
 - Single point systems
 - Things in between

5. Analysis Practices

Sample Collection

- Test Slate Selection, Interpretation of Data
- Response to data, scheduling and follow through

Dime for a Dollar – Show me the Money

Short List - What's RIPE for Improvement?

5. Material Use / Waste control

- Leakage 80 to 90 percent is controllable
- Product handling particularly drums and kegs
- Waste generation don't use what you don't have to

6. Knowledge development

- Develop an attitude of 'chin-up value'
- Find a motivated, no-nonsense change agent
- Develop plant wide / company wide objectives
- Empower and reward, then get out of the way

Objective Measure – NRCC/STLE

Sector	Particle	Induced	Failure	Non-Pa	rticle Inc	luced	Total
	Abrasion	Erosion	Fatigue	Adhesion	Fretting	Other	rotar
Transportation	799	-	202	240	17	68	1326
Agriculture	735	54	45	104	2		940
Mining	551	117	25	15	1	17	726
Pulp & Paper	217	93	13	36	4	19	382
Forestry	101		14	25			
Power Gen	69	30		31	26	34	190
Total	2472	294	299	451	62	144	3722
Percentage by Category		82%		•	18%		

SAE Engine Study – Gas & Diesel

Study compared wear rates with different qualities of filtration.

40 µm element = baseline

 $30 \ \mu m \ element = 50\% \ less$

15 μ m element = 70% less

OEM Engine Filter quality

• $\beta_{35} = 200$

•Corresponds to 99% efficiency at 35 micrometer

Ref: SAE Gasoline and Diesel Engine study, Diagnetics - JFFitch

Objective Measure – BHRC / NEL

BHRC and National Engineering Laboratory

117 Hydraulic Systems Field Study

Reliability Analysis

Injection Molding	13
Metal Working	15
Machine Tools	6
Material Handling	15
Mobile Equipment	22
Marine Systems	16
Test Stands	17
General Machines	3

The purpose of the study is to report the influence of particle size and concentration on machine reliability.

Study Concluded the following:

1) High correlation of failure to contamination levels.

2) Failure data used to create chart showing log relationship of cleanliness to reliability.

3) Significant (50 fold) improvement in reliability exists in reducing dirt load in hydraulic systems.

Ref: Diagnetics Case Study

Mining Hydraulic Shove Study

Hitachi 2500 Shovel - \$99,901 annualized savings

- 4 premature pump failures 27 months (\$20,000 per exchange, \$34,000 per event production losses)
- Plus: 42 hose failures, severe oil oxidation at 2,250 hours, sever servo value failures, 39 hours downtime for repair.

Effect of Precise Lubrication

- 1.94 years into changes
- Achieved 15/12/9, (from 22/20/17); oil lifecycle to 17,000 hrs (from 4,000).
- Eliminated 4 pump replacements and several servo valve failures.
- Increased productivity of the excavating operation

Ref: AV Lubricants, Hypro Fltration, Mobil Oil Case Study

Giant Industries - Energy Savings

8 Machines, poor service factors, closely parallel conditions. Initial readings following oil change to new mineral oil.

	Service		Baselin	e Elect	rical	Adv Tech	Lubricant	Dai	ly Electrical	۸.	nnualized	•	nnualized		
Eq. ID	Factor	Voltage	Amps	Cost	l Day	Average	Electrical	Dai	Cost?		Value		ricant Cost ?		Net Value
						Amperage	Cost / Day		•						
P105	1.15		87	\$	174	85.09			· · · ·	\$	1,394	\$	60	т	1,334
P211A	1	460	20		35	19.42	34	•	× ,	\$	368	\$	60	· ·	308
P507	1	460	41	т	645	36.91	580	\$	· · ·	\$	23,475		360	\$	23,11
P507A	1	4160	41	т	645	36.87	580	\$	· · ·	\$	23,704	\$	360	\$	23,34
P902A	1	4160	88		153	85.13			(4.99)		1,821	\$	360		1,46
P908A	1	460	187		325	157.66			· · · ·	\$	18,621	\$	60	\$	18,56
PD506	1.15		46.8		94	46.65	93		(0.30)		109	\$	60	\$	4
P605	1.15		48.5		84	44	77	\$		\$	2,856	\$	60	\$	2,796
Savings	8.45		559.30		55.00	511.73	\$ 1,956.00	\$	(198.21)	\$	72,348	\$	1,380.00	\$	70,968.0
		nergy Con	-	า		47.57									
		ergy Cons	umption			(0.085)									
Cost per l	Kilowatt H	ours				\$ 0.0175	Meth	od	to calcu	ıla	te enei	ЗУ	cost sav	ving	gs:
Per Mac	chine Ty	picals				Value	1. Cal	cul	ate deltas	in	ampera	ge p	er machin	e	
Number	of Machin	es				8	2. Coi	nve	rt Amp dra	aw	to KWH	per	day		
Average I	Daily Amp	o draw ? p	er Machin	е		5.95	KWH	I/D	ay = Volts *	Am	ips * ?3 * 8	Svc F	actor * Hour	s / 1	000
Average I	Daily Elec	trical Cost	? per Ma	chine		\$ (24.78)	3. Cal	cul	ate Cost p	ber	day				
Average /	Annual Sa	aving per N	Aachine -	8 macl	hines	\$ 8,871.00	\$KW	/H /	Day = KWH	/ d	lay * \$\$ / ł	(WH			
One Tin	ne Char	ge per m	achine			Value	4. Anr	านล	lize contri	bit	ion				191
Equipmo	nt modific	ations - ha	rdware &	installa	tion	\$ 500.00	\$\$ / `	year	. = \$KWH / [Day	* Running	g Day	'S		1 m
⊑quipmei		nversion				\$ 250.00									1/1/1
Typical P	roduct Co					Value									
Typical P		ge per n	nachine												
Typical P Recurri	ng Char	ge per n cost ? per f				\$ 172.50									JUL I
Typical P Recurri i Annual Lu	ng Char ubricant C	<u> </u>	Vachine	• Mach	ine								1		

Giant Industries – NPV Analysis

Precision Lubrication Improvem	en	t Plan -	Ba	alance o	of F	Plant (B	OF) Conv	era	sion	
Year		0		1		2		3		4	5
Annualized Program Benefits for Trial Group		\$72,348		\$0		\$0		\$0		\$0	\$0
5 year Projected Energy Savings Benefit for BOP		\$0		\$904,350		\$904,350		\$904,350		\$904,350	\$904,350
	<u> </u>										
Equipment Modifications - per machine * 100 Machines	\$	50,000	\$	-	\$	-	\$	-	\$	-	\$ -
Initial Product Conversion - per machine * 100 machines	\$	25,000	\$	-	\$	_	\$	-	\$	-	\$ -
Per Machine Annual Lubricant Cost ? - * 2 for BOP	\$	34,500	\$	34,500	\$	34,500	\$	34,500	\$	34,500	\$ 34,500
Annual Cost for Lubrication Skills Development	\$	50,000	\$	15,000	\$	15,000	\$	15,000	\$	15,000	\$ 15,000
Annual Cost Lubrication Program Reliability Engineer			\$	120,000	\$	120,000	\$	120,000	\$	120,000	\$ 120,000
Miscellaneous improvements - 3 year budget			\$	100,000	\$	100,000	\$	100,000			
Total Costs	\$	125,000	\$	169,500	\$	169,500	\$	169,500	\$	169,500	\$ 169,500
Net Cash Flow	\$	(125,000)	\$	734,850	\$	734,850	\$	734,850	\$	734,850	\$ 734,850
Select Discount Rate		20%									
Discount Factor		100%		83%		69%		58%		48%	40%
Discounted Net Cash Flow		-\$125,000		\$612,375		\$510,313		\$425,260		\$354,384	\$295,320
Five Year Net Present Value (NPV)	\$	2,072,651									
Internal Rate of Return (IRR)		588%							-	11	

Jost Report – Effect of Lubrication in Industry, Agriculture, Natural Resources

The Hub of the Industrial Wheel

What are the Potential Savings to Industry, Agriculture and Natural Resources through Effective Lubrication Education and Application? According to Dr. Peter Jost, the Jost Report (circa 1966)

20.0% Savings in Lube Buys
 0.13% Labor savings from reduced repairs
 1.0% Savings from utilization and efficiency
 5.0% Savings on New Machine Purchases
 7.5% Less energy use from friction control
 20.0% Savings on maintenance and repair costs

Jost Report, British Ministry of State for Education and Science. H. Peter Jost., as shown in Bannister, Lubrication for Industry

Dime for a Dollar - Justifciation

What is the bottom line regarding improvement initiatives under the standing economic conditions?

SHOW ME THE MONEY!

Question 1

- Which of the following represents the biggest possible impact for financial improvement for the facility?
 - A. Reduce cost of lubricant purchases.
 - B. Reduce cost of lubricant labor expense.
 - C. Reduce cost of component replacement.
 - D. Avoiding production losses from scheduled and unscheduled machine outages.

Question 2

- Which of the following is possible from development of Precision Lubrication Practices?
 - A. Reduce costs associated with lubricant purchase, use and replacement.
 - B. Reduce cost of energy through friction control.
 - C. Reduce direct cost of maintenance, repair and production losses.
 - D. All of these occur with Precision Lubrication.

7 Step to Reliability Centered Lubrication

- 1. Develop the business case.
- 2. I Assess the current lubrication process and practices
 - II Assess the relative criticality of each machine
 - III Develop and Communicate Goals and Objectives
- 3. Determine How Information will be Managed IT Decision
- 4. Conduct a reliability centric lubricant requirements assessment
 - Product type, grade, volume, frequency
 - Operating environment severity
 - Component contamination sensitivity
 - Oil analysis requirements and alarm settings set by machine priority
- 5. Implement Using Modern Tools for Work Flow Management and Documentation
- 6. Analyze results against the objective, make adjustments, improve the process

Adjust the plan to stay on course, update the plan as needed for new business challenges.

Establishing Cost of Improvement

Step 1: Make the Business Case

Catalog the machines

Estimate the total cost to make improvements

- Verifying, defining lubricant requirements
- Verifying, defining relubrication activities (volumes, frequencies, route sequences, simple but needed machine upgrades)
- Tools for program management,
- Cost of upgrading knowledge level
- Establish the cost basis
- Perform a financial analysis review.

Cost of Improvement Estimates

Catalog the machines – type, number, complexity,

							Total Manhours for		
						Total Manhours for		Installation	Estimated
		Number of Type (or	Machine	Baseline Manhours		Routing andWork	Supervision and	Hardware - Parts	Installation
Item Number	Machine Type/Description	Estimate)	Complexity	for One Machine	Design	Leveling	Coaching	and Supplies	Manhours
1	Conveyors	12	Low	2	9.3	1.2	1.2	\$1,200	24
2	Repulper	3	Moderate	4	9.8	0.3	0.6	\$300	6
3	Pulp Machine	2	Very High	15	27.0	1.0	2	\$2,000	30
4	Pumps	50	Low	2	10.0	2.5	5	\$2,500	50
5	Vessels / Agitators	3	Moderate	4	9.8	0.3	0.6	\$300	6
6	Tissue Machine	1	Very High	15	15.0	0.5	1	\$1,000	15
7	Kitchen Towel Machine	3	Very High	15	36.6	1.5	3	\$3,000	45
8	Printing Press	1	Very High	15	15.0	0.5	1	\$1,000	15
9	Hand Towel Machine	2	Very High	15	27.0	1.0	2	\$2,000	30
10	Hand Towel Printing Press	1	Very High	15	15.0	0.5	1	\$1,000	15
11	Kitchen Wrapper Packer	1	Very High	15	15.0	0.5	1	\$1,000	15
12	Hand Towel Wrapper Packer	3	Very High	15	36.6	1.5	3	\$3,000	45
13	Conveyance - tow motors	4	Moderate	4	11.8	0.4	0.8	\$400	8
14	Stretchwarppers	4	Moderate	4	11.8	0.4	0.8	\$400	8
Total	15	90			249.6	12.1	23.0	\$19,100	312

Cost of Improvement Estimates

Create a cost basis projection

Program Design Cost Estimate

Activity	Complexity	Man Hours	Hourly Rate	Cost
Planning and Scoping	Low	24	\$169	\$4,050
Detailed Design		249.6	\$169	\$42,122
Routing and Work Leveling		12.1	\$169	\$2,042
Modification Supervision/Coaching	16	16.0	\$169	\$2,700
Total Design, Routing and Modification Support		301.7		\$50,914

Hardware Installation		Man Hours	Hourly Rate	Cost
Hardware - Parts and Supplies				\$19,100
Client wishes to outsource installation labor	Yes			
Installation labor hours		312.0		
Labor - if outsourced to AMRRI / Local Labor Pool			\$90	\$28,080
Labor - if provided by client- Input Rate Here	\$35		\$0	\$0
Total Hardware Installation				\$47,180

			Cost Per Course	Total Upfront
Education and Training	Number Upfront	Number Ongoing	Day / Hour	Cost
Single Event, Multi-Day On-Site Training Course(s)	1		\$2,500	\$2,500
10 - Session, year long training program	10		\$1,350	\$13,500
Hours of Online Training (Per Year)	0	24	\$169	\$0
Total Training				\$16,000

Repair Cost: Select percer costs attributable to repair	tage of maintenance and ot	•	ctions, etc. Includes -up work and scheduled rebuilds
Actual	Best Guess	Confidence	Basis
\$10,000,000.00	\$100	95%	\$10,000,000.00
50%	10%	95%	\$5,000,000.00

AM

	Select estimated percentage ttributable to poor lubrication	•	ver lubrication, under-lubricatior on control, ineffective oil analysi
Actual	Best Guess	Confidence	Basis
50%	10%	95%	\$2,500,000.00
50%	10%	95%	\$1,250,000.00

AN

Actual	Best Guess	Confidence	Basis
50%	10%	95%	\$625,000.00
\checkmark			

AM

Actual	Best Guess	Confidence	Basis
0%	10%	90%	\$900,000.0

	Repair	Parameter	C	Comments		
		•	ents recognized as meaning	Work that is not done, done improperly or is not s recognized as meaningless work (redundant, overkill). (This value is lost to poor skills)		
	Hardware and Configuration Penalty: What percentage Includes hardpiping of reservoirs, state of lubrication cost improvement could be achieved by use of automation, by retrofitting machines to be lubrication friendly					
	Actual	Best Guess	Confidence	Basis		
	0%	10%	90%	\$81,000.00		
	0%	10%	90%	\$81,000.00		
AMR	RIE			30		

	Parameter		Comments		
PM Def. Penalty: What potential improvement in lubrication Elimination of wasteful practices, defining precise abor efficiency could be achieved by replacing current activities with Precision Based lubrication activitiesElimination of wasteful practices, defining precise requirements in scheduled PM. Assume half of effect due waste elimination.					
Lubricant Technology Penalty: What percentage of the otal lubrication costs could be saved through the use of 3rd intervals, replacement intervals, machine lifecycle, reduce energy cost					
Actual	Best Guess	Confidence	Basis		
0%	10%	10%	\$9,000.00		
0%	10%	90%	\$81,000.00		
		2	3/1//		

Lubrication Corrective Work Efficiency Parameter	Comments
Input percentage of total lubrication costs attributed to unscheduled lubrication activities,	Activity rescheduled due to operating requirements, activities that are 're-done', 'on-demand' activities.(Unplanned oil changes, regrease activities, stoping leaks, sample collections, filter replacement, troubleshooting)
Input estimated percentage of unscheduled machine lubrication activities that are a complete waste of time	Regreasing hot bearings following the normal grease schedule, performing work that could not be done on the normal schedule - Issues related to skill & knowledge

	Actual	Best Guess	Confidence	Basis
	0%	10%	90%	\$81,000.00
	0%	10%	95%	\$7,695.00
AMRI	NI:			32

Production Loss for Input estimated annual dow costs to nearest thousand	o Machine Availability ntime costs and risk-based	Includes unscheduled of downtime, production de excessive inventory cos	Comments Includes unscheduled downtime, excessive scheduled downtime, production derate costs, energy costs, excessive inventory costs, safety and other risk-based costs. Use net numbers.		
Based on Lubrication Relate	Based on Lubrication Related Portion of Repair Cost, as noted above, the prorated Risk portions is				
Actual	Best Guess	Confidence	Basis		
\$0	\$100,000	50%	\$50,000.00		
			\$3,125.00		

	Financial E	Benefits Anal	ysis			
Select Financial Evauation Case	Scenario 1					
Year	0	1	2	3	4	5
Value Allocation	\$ 403,410	⅓ - Y1	⅔ - Y2	Full Value	Full Value	Full Value
Targeted Improvements		\$133,125	\$266,251	\$403,410	403,410.0	\$403,410
Program Costs						
Planning and Scoping - Gap Analysis, RCFA	\$4,050	\$ -	\$ -	\$ -	\$ -	\$ -
SOP Review and Design (\$500 x 100)	\$42,122	\$ -	\$ -	\$ -	\$ -	\$ -
Tour development and workload balancing (10%			•	•	•	
of development)	\$2,042	\$ -	\$ -	\$ -	\$-	\$ -
Automation - Development, Planning and						
Installation	\$0	\$ -	\$ -	\$ -	\$ -	\$ -
Training and Development (80 hrs @ \$168 per hr						
plus books)	\$2,500					\$4,050
On-site program support	\$2,700	\$1,350	\$2,700	\$1,350		
Modification Installation and Hardware (\$500 x						
500)	\$47,180	\$ -	\$ -	\$ -	\$ -	\$ -
		\$ -	\$ -	\$ -	\$ -	\$ -
Total Costs	\$100,594	\$14,850	\$6,750	\$5,400	\$4,050	\$4,050
Net Cash Flow	-\$100,594	\$118,275	\$259,501	\$398,010	\$399,360	\$399,360
Select Discount Rate	15%	<i>••••</i> , = <i>•</i>	<i>4</i> 200 ,001	<i><i><i>voooioio</i></i></i>	+000,000	+000,000
Discount Factor	1.00	0.8696	0.7561	0.6575	0.5718	0.4972
Discounted Net Cash Flow	-\$100,594		\$196,220	\$261,698		
Summary Investment Analysis						- 14
Five Year Net Present Value (NPV)	\$887,060					
Internal Rate of Return (IRR)	146%					illa.

Purposes for this Presentation

- Focus on what financial management wants TODAY – <u>short term cost reduction</u>
- Find Cash Flow Improvements
 - Eliminate unnecessary oil changes (at least ¹/₃ of your planned lubricants consumption)
 - Eliminate premature aging of your lubricants (extend lubricant lifecycles by 2 to 5 times baseline.
 - Reduces 1/2 of your oil consumption.

ROI vs. Cash Flow Improvement

Short Term Cost Reduction

Eliminate unnecessary trips with the grease gun

Reduce by ½ (or more) the amount of grease wasted through automation

-is your automation just an improvement, or is it accurate?

 Eliminate wasteful practice of product duplication, excess inventory

Purposes for this Presentation

We Could Focus on... – <u>short term cost reduction!!</u>

Before you get too excited about this angle, a couple things you should know.

 If you eliminated all your lubricant purchases it wouldn't budge your profitability #'s.

Focus On Meaningful Results

One of the smallest cost items in the budget directly influences 55% of total maintenance cost.

Purposes for this Presentation

Focus on ... – short term cost reduction!!!!!!!!!!

.... It's a rounding error! **A false economy**

Mathematically, focusing on lubricants' cost control can't lift profits, the % values are too small.

However, simply cost-cutting without a plan – a strategy, a set of goals, a set of defined changes – can have the opposite effect.

If You Want a Reliable Plant

- You Need to Develop a Strong Machine Lubrication Plan!
- The plan must be <u>purposefully oriented</u> toward improving machine reliability, but you can sell short term cost reduction @ the same time!
- The plan must have <u>Visible</u>, <u>Vocal</u> management support for an extended period of time.

Question 3

- What is the purpose of the financial analysis?
 - A. To demonstrate to management how money will be used.
 - B. To project to management how much is expected to be paid back to the company.
 - C. To project how quickly money will be paid back to the company
 - D. All of these should be included.

Question 4

- Why is short term cash flow an important consideration?
 - A. Because the payback is bigger than the long term return from improved machine health.
 - B. Because it is impossible to calculate a long term ROI.
 - C. Because the short term improvements are highly desirable in a down economy.
 - D. Short term cash flow is not really important because the returns are too small.

Implementing Reliability Centered Lubrication

Step 2: Assess the current process and practices

Find Out Where You Are Now, Because... It's hard to know the right course to take if you don't know the starting point!

Conduct a survey and gap analysis, compare existing practices to an objective standard.

Assessment Criteria

Program Measurement Topics

Vendor Selection Process
 Lubricant Delivery, Storage & Handling Process
 Lubricant Technical Selection Practices
 Lubricant Application Practices
 Oil Analysis Program Practices
 Condition Control Practices
 Program Management & Personnel Development
 Lubrication Practices Standardization (SOP's)
 Safety, Health and Environmental Practices

Step2, Part I: Conduct a Survey...

The starting point of the survey probably should be *Lubricant Receipt & Storage.*

pricant Storage, Delivery and In-plant Handling Process	0.44	6.06	2.69
-plant receipt and handling practices	0.80	7.75	6.2
The lubricant is delivered to a covered storage area	0		
The lubricant container is tightly sealed, and in good condition	1	9	
The lubricant container is clearly marked	1	9	
The lubricant container displays the date of packaging	1	8	
Upon receipt, the lubricant container is marked with the internal proprietary plant lubricant coding system	1	5	
-plant Central storage practices	0.50	4.00	2.0
A min-max inventory control level is established for each product at central stores	1	5	
The lubricant is stored in a climate controlled location (covered, dry, constant temperature)	1	3	
Products are rotated upon receipt such that the oldest material is always pulled for use first (FIFO)	0	191	
All containers at and greater than 55 gallons are storeed with an appropriate level of containment	0	11	1
Semi-bulk storage containers are scheduled for periodic cleaning and DOT fitness testing			100

Survey Part I: Survey Results

n-plant Open Stores Practices	0.33	5.50	1.83
A min-max inventory control level is established for each product at each inventory location	0		
The number of units (gallons, drums, pails, etc) of each product at each location is maintained between the min/max levels	0		
The open lubricant stores are maintained in a near climate controlled location (covered, dry)	0		
The open oil containers are fitted with breathers on their air relief vent ports	0		
Grease packaged in tubes is stored in a vertical orientation	1	8	
Only one container of a given product is open at a given time (only 1 drum of X, only 1 pail of X, only 1 keg of X) at each in-use stores location	1	3	
n-plant Handling Practices	0.14	7.00	1.00
All lubricant handling utensils (funnels, brushes, oil dispensers, etc) are staged in a dedicated storage cabinet when not in use	0		
All lubricant handling containers are clearly marked with their designated product type	1	7	
All lubricant handling containers are maintained in a clean condition	0		
All lubricant handling utensils are clearly marked with their designated product type	0		
All lubricant handling utensils are maintained in a clean condition	0		
Lubricants that are in-use (in a dedicated handling container) are staged in clearly designated locations inventory locations	0	7	
All Lubricants (except ISO 680+) designated for highly critical applications are pre-filtered prior to placement in the machine	0	1	

Existing Practices Survey

Lubrication Program Item	Obj. Score	Qual. Score	Rating
Lubricant Delivery, Storage & In-plant Handling	0.4	6.1	2.7
In-plant receipt and handling practices	0.8	7.8	6.2
In-plant Central storage practices	0.5	4.0	2.0
In-plant Open Stores Practices	0.3	5.5	1.8
In-plant Handling Practices	0.1	7.0	1.0

- Central storage, in-use storage, and handling practices compromise the health of both lubricants and machines.
- Lubricant storage requires isolation (dry, steady moderate temperature, isolated from atmosphere)
- Lubricant handling requires same care plus limiting any risk of cross contamination of lubricants by tagging machines, containers and stores, clearly identifying all applications by product type and grade

Survey Overview Diagram

Question 5

- Why is the value of a objective assessment of program conditions?
 - A. Sets the starting point for all to see.
 - B. Enables accurate comparison to original conditions over times
 - C. Helps clearly define what is important to the plant
 - D. All of these are highly valuable.

Implementing Reliability Centered Lubrication

Step 2, Part II: Criticality Assessment

Conduct a Machine Criticality Assessment

- Risk Assessment Incorporates risk evaluation for:
 - Environmental Hazard
 - Employee Health and Safety
 - Lost Production Potential
 - High Maintenance Cost Potential
 - Plant specific points of interest

Step 2, Part II.....

You will need to find an Assessment Tool

The tool helps to keep all the details organized

NOTE: Impact is measured during peak demands for production

Equipment Relative Importance Criteria Table

Equipment Classification (Duty Cycle / Operating Environment)

		Severe / Harsh	Severe / Mild	Non-Severe / Harsh	Non-Severe / Mild
it /	Level 1	Level A	Level B	Level B	Level C
quipment riticality	Level 2	Level B	Level C	Level C	Level D
	Level 3	Level C	Level D	Level D	Level E
ШО	Level 4	Level D	Level E	Level E	Level F

Equipment Relative Importance Level Legend:

Criticality Level 1 + Severe Duty Cycle + Harsh Operating Environment = Level A Criticality Level 2 + Severe Duty Cycle + Harsh Operating Environment = Level B Criticality Level 1 + Severe Duty Cycle + Mild Operating Environment = Level B Criticality Level 1 + Non-Severe Duty Cycle + Harsh Operating Environment = Level B Criticality Level 3 + Severe Duty Cycle + Harsh Operating Environment = Level C Criticality Level 2 + Severe Duty Cycle + Mild Operating Environment = Level C Criticality Level 2 + Non-Severe Duty Cycle + Harsh Operating Environment = Level C Criticality Level 1 + Non-Severe Duty Cycle + Mild Operating Environment = Level C Criticality Level 4 + Severe Duty Cycle + Harsh Operating Environment = Level D Criticality Level 3 + Severe Duty Cycle + Mild Operating Environment = Level D Criticality Level 3 + Non-Severe Duty Cycle + Harsh Operating Environment = Level D Criticality Level 2 + Non-Severe Duty Cycle + Mild Operating Environment = Level D Criticality Level 4 + Severe Duty Cycle + Mild Operating Environment = Level E Criticality Level 4 + Non-Severe Duty Cycle + Harsh Operating Environment = Level E Criticality Level 3 + Non-Severe Duty Cycle + Mild Operating Environment = Level E Criticality Level 4 + Non-Severe Duty Cycle + Mild Operating Environment = Level F

Impact from Criticality Differences...

Level A and D	Conditioning, Planned and Scheduled Replenishment and Inspection, Weekly Onsite and Monthly Lab Based Analysis
Level C and D	Conventional Products, Periodic Filtration, Planned Replenishment, Quarterly Analysis
Level E and F	Conventional Products, Planned Replenishment
RI	Man Burn
L	

AM

Question 6

- Why is the value of a machine criticality assessment?
 - A. Prevents waste of time on unimportant machines.
 - B. Helps to ID which activities should incorporate advanced condition assessment tools
 - C. Helps to ID the machines that should be considered for upgrades
 - D. All of these are highly valuable.

Implementing Reliability Centered Lubrication

Step 2, Part III : Develop, communicate objectives Set some goals and objectives! ✓ They should reflect the findings of the benchmark / practices survey. ✓ They should be criticality specific ✓ May also be machine specific \checkmark They should be measureable.

7 Steps...., Step 2, Part III

Examples of Useful Goals and Objectives

Purpose to: 1.

- improve efficiency of task scheduling
- achieve 95% compliance for 'first run' completion of scheduled relubrication work orders (Year 1, maybe better in the following years).
- reduce oil consumption without hurting machines
- 2. Put all Level A and Level B machine oil sumps on some kind of lubricant analysis –
 - the Navy way Color Right, No Sediment, No Haze Done!
 - any observed differences to a lab we go
 - all sumps over X gallons get looked at frequently (you decide the limit)
- Maintain a cleanliness rating of ISO 21/19/17 or better on all oil-3. based sumps; 19/17/15 on Level A/B static sumps; 16/14/13 on Level A/B circulation and hydraulic systems.

Continued...

- 4. Put all Level C and D sumps on routine analysis and convert all sumps at >= 35 gallons to condition based change intervals.
- 5. Rationalize all grease intervals for machine operating context.
 - Open Gears huge waste of lubricants and labor is common
 - Show you more shortly
- 6. Automate grease requirements with \leq weekly planed intervals.
- 7. Teach Operators how to properly check oil levels, and set up a bi-weekly schedule to make sure it gets done
 - starts with Plant Production Manager, Production Supervisors
 - DAILY FOLLOW-UP for at least 1 Month, weekly thereafter

Continued...

- 9. Shift lube techs to addressing the problems that make you drink oil:
 - Find and fix the machine leaks
 - Only 20% specialized fittings and redesigns
 - Repair gaskets, close lids, install vent filters
 - Replace lip seals before there's a runny mess
 - Identify need for and install passive shields
 - Fix and re-set the automatic lubrication systems
 - Compressors oil lost to poor separator function tighter control
 - Grease supply 10 to 100 times TOO MUCH GREASE is common. If you need that much, you are using the wrong product
 - Improve sump oil condition (fans, heat exchangers, headspace blowers/vacuums, kidney loop filtration)
 - Use HP greases to extend relube intervals, synthetics and HP mineral oils to triple sump change intervals, but DON"T DO IT BLIND!

Step 2 – Communicate the Plan

Installing a new offense requires that the coach:

- 1. Communicate CLEARLY what is going to happen
- 2. Provide a playbook with the plays clearly diagramed.
- 3. Match the talent to the role responsibility
- 4. Drill, Drill, Drill, Drill, Drill

Play Number 2

Program Development – Multi-Department Responsibility

Who Has A Role In Lube Program Success

MAINTENANCE MANAGEMENT

Program Leader Selection, Technician Selection, Training and Development

MAINTENANCE/RELIABILITY ENGINEERING Machine Prioritization, LFMEA, RCFA

PURCHASING AND LOGISTICS MANAGEMENT

FINANCE Allocation of Nece\$\$ary Re\$ources

OPERATION MANAGEMENT Operator Based Care

Vendor Selection, Lube Storage and Handling

DESIGN ENGINEERING Design for "Precision Lubrication"

Implementing Reliability Centered Lubrication

Step 3. Decide how the information will be stored, managed

Completing the Survey

Step 3. Lubrication Management Program

Implementing Reliability Centered Lubrication

Options to consider

- CMMS Quality Routing Function
 - □ If it exists in your version
 - If your hierarchal structure ends with the component (vs. the machine, or asset)
 - □ If you can schedule and close entire routes with a keystroke

Viable Programs – based on personal experience

□ Maintelligence (Desmaint.com)

□ LubelT (Generationsystems.com)

Implementing Reliability Centered Lubrication Step 4 : Conduct a reliability centered lubricant requirements assessment

Define the lubrication requirements for each machine, and each lubricated part!

Physical audit -

- Product type, grade, volume, frequency
- Contamination sensitivity and requirements
- Oil analysis requirements and alarm settings set by machine priority

Contrast with machine OEM recommendations. Document your findings

Create SOP's for each machine

System Components to Consider

Coal Conveyor Drive System

Building the Survey

Begins with, Define Detail of Lubricated Components

ltems	Make	Model	Details
Drive Train - Conv	veyor A1		
Motor	GE	5KS511SN3260HB	Frame
			Shaft Diameter
			RPM
			Orientation (Horizontal vs Vertical)
			Each Bearing Number
			Each Bearing Make and Model
			OEM Lubricant Fill
			Operating Conditions
Coupling	Falk	1080T	Туре
			Physical Dimensions
			OEM Stated Lubricant Capacity
			OEM Stated Relube Interval

Implementing Reliability Centered Lubrication

Step 4, continued. Create a Database of Machine Details

<u>Bearing info: SKF standard </u>	<u>steels</u>		<u>convert inches to mm</u>		
	INPUTS		dimension in inches	3	in 🛛
outer diameter (mm)	76.2	mm	dimension in mm	76.2	mm
bore diameter (mm)	38.1	mm			
rpm	600	rpm			
min vis for EHD: v(L10)	35.91173	cSt	at operating temp		
			http://www.geocities.com	/CapeCana	veral/3655/VI.html
current vis at op temp	26	cSt	current MTBF	54	
EP? (Y/N)	Y		Particle count (PC)	21	ISO 4406 range # > 14 micror
K	0.723997		current moisture	800	ppm
L10 lubricant correction factor	0.828166				
			proposed (PC)	19	ISO 4406 range # > 14 micror
proposed vis at op temp	60	cSt	particle life extension factor	1.441379	
EP? (Y/N)	Y		proposed moisture	600	ppm
K	1.670763		moisture life extension factor	1.163705	
L10 lubricant correction factor	1.343851				
					factors included
lubricant life extension factor	1.622684		life extension factor	1.622684	lubricant
			expected MTBF	87.62491	lubricant
include lubricant? (Y/N)	Y				
nclude particle? (Y/N)	n	_			
nclude moisture? (Y/N)	n	T		and second	

Implementing Reliability Centered Lubrication

Step 4, continued. Compile the details, create the schedule

				Number of	Relubrication	Method of		Test	Lubrication
Name	Sub-Assembly	Product	Qty.*	Points	Cycle	Application	Analysis	Slate	Procedure
Conve	eyor A1								
	Motor	#2 RB	14	2	Semi Annual	Pressure Gun	NA	NA	Motor Relubrication
	Coupling	#2 Cplg	6	2	Annual	Pressure Gun	NA	NA	Gear Coupling
	Gearbox	220 - EP	55	1	Weekly	Oil Bath	Quarterly	Tests	Gearbox Top-up
	Drive Roll	#2 EP	121	2	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	Snub Drive Roll	#2 EP	95	2	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	High Tension Roll	#2 EP	95	2	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	Tail Pully Roll Brng	#2 EP	95	2	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	Bend Pully Roll Brng	#2 EP	41	8	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	Snub Head Roll Brng	#2 EP	95	1	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	Head Pully Roll Brng	#2 EP	95	1	Bi Monthly	Pressure Gun	NA	NA	Bearing Relubrication
	Idler Bearings	#2 EP	2	Misc.	Annual	Pressure Gun	NA	NA	Bearing Relubrication

* Volume in shots for grease, gallons for oil.

#2 EP = #2 Extreme Pressure Grease

#2 RB = #2 Ball and Roller Element Grease

#2 Cplg = #2 Coupling Grease

To calculate shots for a given grease gun, estimate ..0352 grams per oz., and extrapolate to number of shots.

Motor Relubrication Procedure

Coupling Relubrication Procedure

Filtration

Completing the Survey Step 4, continued. Create Standardized Practices

Lubrication Standard Operating Procedure

Thorough, practical procedures are a precursor to efficient and sustainable precision lubrication.

A thorough survey will lead seamlessly to the development of reliability centric work procedures

Relube - LC&I	Oil Level Check and Top-up	0	Relifie	-LCAI	Oil Level Check and Top-up	D.
Procedure ID	Procedure Name	Machine ID		dure ID	Procedure Name	Machine ID
#2 Finish Mil Ischine Name/Type High	Motor Component Type Running	Plain Bearing Sub-Component Type In-board Out-board Galion	Step 1:	This proc	asfo energy, sinte for the activity, clure is typically conducted while the machine for non-invasive relubrication and inspection w	
Childrality	Required Machine Openating State Relubrication Act	Component Position Volume Liet	Step 2	Verify that	the work order and machine ID match. the machine ID and sump type identified on th tion. If it doeant then locate the correct machin	
ISO 68 - R&O Lubricant Type Procedure name: Procedure Purpose:		Service Frequency Sump Volum and Tep-Up explanation for checking the oil level an		Locate th	I to use only the designated lubricant, and no si a sump oil level indicator for proper tel. a sight glass, dipatick, level port and inspection nd secure any covers or guards as required to	port locations on the lubricant sump.
Asterial Requirements Safety Precautions:	adding lubricant to a reservoir that is I Minimum 5 liter lubricant top-up conta lubricant, channel locks, clean cloth, s Follow plant guidance on Zero Energy	ner fitted with a spout, appropriate raste oil pan, note pad.		interest a Carefully for observ	ean, list-free cloth, wipe any remaining soil, dej d the surrounding snea. remove any debris or accumulated lubricant fro ation of the seal area during and following the a pievel indicator shows the oil level to be above	maround the lubricant sump to allow pplication of lubricant
			Step 4	Correct II Carefully applicatio	e fill port plug(S) and set it aside. Be careful to	priale Maricani t must be removed for proper kuprici
\otimes	a "			If quick c used to h Using an lubricant	criment couplings have been installed on the unit andle the lubricants during top-up, drain and fill appropriate application device, carefully add an o the lubricant sump to bring the oil to the desig	activities, adequate volume of the designated
	Page 1 of 3			indicator.	Page 2 of 3	1
energy and the second second second second	Line Say particle definition, proprietar unit, and de Simonde Ein Res and producted between Hangady on Modelly and to account on sampling on Additional Conference on Society of Modelly and to account on sampling on Additional Conference on Society of	program of the second plant business. Deryfolden of opyrydd grenn 1999 y derhannes		and Queen and Sold (Sec.)	nordal ke (la generalizzate) general e la dorre oriente e la der Bindle Add Mitteling generale dativitationes	person of the securit sheet location. Using the security of th

Example #1

Lubrication Practice Method for Greased and Oiled Element Bearings

Selection Guidelines – Element Bearings

Ball - Axial

Ball - Thrust

Spherical Roller

Cylindrical Roller

Needle Roller

Selection Guidelines – Element Bearings Oil or Grease? Step 1 - Estimate Bearing Angular Velocity,

where,

nDm = Pitch Line Velocity of the Element,

speed that the middle of the element moves around the circle.

n = shaft speed

ID = Bore Diameter

OD = Outside Diameter

Selection Guidelines – Element Bearings

Step 2 - Compare nDm values to recognized standards

	Common Elei	Common Element Bearing Speed Factors, ndm								
Note: These parameters are a reflection of	Bearing Type ^c	Oil Lubricated ^a	Grease Lubricated							
concern over grease stability more than bearing construction.	Radial Ball Bearing	500,000	340,000							
Border line values are not absolute. If an element is operating above the noted speed limit it will require more frequent lubrication to maintain long term reliability.	Cylindrical Roller Bearing	500,000	300,000							
	Spherical Roller Bearing	290,000	145,000 ^b							
	Thrust, Ball and Roller	140,000								
	a. Oil lubrication is preferred where heat dissipation is required									
	b. Grease lubrication is not recommended for spherical roller thrust bearings									
c. Precision bearings and high performance lubricants allow 5 to 50% higher operating ranges.										
RT-	Piro, Wessel. Lubricatio	on Fundamentals, 2 nd Edition. Page 197	100000							

Viscosity and Lubricant Selection

Step 3. Estimate required operating viscosity

 $V_{min} = 27,878 * RPM - 0.7114 * Dm - 0.52$

or

- a. Using Chart, plug Dm.
- b. At intersection of Speed and Dm line, find minimum allowable viscosity
 - c. Ideal Viscosity = 3 * lower limit.

Viscosity and Lubricant Selection

Step 4. Verify actual viscosity vs. required viscosity.

a. Identify the viscosity type from the available options.b. Find the operating

temperature on the left axis.

- c. Draw a line to the intersection point of the select VG Grade.
- d. The 'expected' operating viscosity is at the bottom of the chart.

Grease Application Frequency

Step 5: Replacement Interval

$$T = K \times \left\{ \left(\frac{14,000,000}{n \times (d^{0.5})} \right) - 4 \times d \right\}$$

- T = Time until next interval, hours
- K = Product of Conditional Factors
- n = Shaft Speed
- d = Shaft Size (bore) in millimeters

(1 inch = 25.4 millimeters)

	Bearing	Relubrication Frequency Correction	n Factors				
	Condition	Average Operating Range	Factor	Value			
	Bearing Bore (in)	3.425		3.425			
	Shaft Speed (rpm)	aft Speed (rpm) 1785					
1	Svc Factor (Ft)	Temperature					
		Housing below 150 F	1				
		150 to 175 F	0.5				
		175 to 200 F	0.2				
		Above 200 F	0.1				
2	Svc Factor (Fc)	Contamination		1			
		Light, non-abrasive dust	1				
		Heavy, non-abrasive dust	0.7				
		Light, abrasive dust	0.4				
		Heavy, abrasive dust	0.2				
3	Svc Factor (Fm)	Moisture		1			
		Humidity mostly below 80%	1				
		Humidity between 80 and 90%	0.7				
		Occasional condensation	0.4				
		Occasional water on housing	0.1				
4	Svc Factor (Fv)	Vibration		1			
		Less than 0.2 ips velocity, peak	1				
		Light, non-abrasive dustHeavy, non-abrasive dustLight, abrasive dustHeavy, abrasive dustHeavy, abrasive dustactor (Fm)MoistureHumidity mostly below 80%Humidity between 80 and 90%Occasional condensationOccasional water on housing'actor (Fv)VibrationLess than 0.2 ips velocity, peak0.2 to 0.4 ipsAbove 0.4'actor (Fp)PositionHorizontal bore centerline45 degree bore centerline'actor (Fd)Ball BearingsCylindrical and needle roller bearings					
		0.3					
5	150 to 175 F0.5175 to 200 F0.2Above 200 F0.1Svc Factor (Fc)ContaminationLight, non-abrasive dust1Heavy, non-abrasive dust0.7Light, abrasive dust0.4Heavy, abrasive dust0.2Svc Factor (Fm)MoistureHumidity mostly below 80%1Humidity between 80 and 90%0.7Occasional condensation0.4Occasional water on housing0.1Svc Factor (Fv)VibrationLess than 0.2 ips velocity, peak10.2 to 0.4 ips0.6Above 0.40.3Svc Factor (Fp)PositionHorizontal bore centerline145 degree bore centerline0.5Vertical centerline0.3Svc Factor (Fd)Bearing DesignBall Bearings10			1			
		Horizontal bore centerline	1				
		0.5					
		0.3					
6	Svc Factor (Fd)	Bearing Design		1			
		Ball Bearings	10				
		Cylindrical and needle roller bearings	5				
		Tapered and spherical roller bearings	1				
		Calculated PM cyc	cle (hr)	493			
		Calculated PM cycle	e (day)	20.5382			
		•	· · ·	0.685			

Moller Boor, Lubricants in Operation

Machine Regrease Frequency Factors

- All machines operate differently.
- This provides a 'volume' correction based on the operating condition.
- Multiply the factors (green) to arrive at a frequency to relubricate the elements.
 - Less volume, more frequently is always better

		Relubrication Frequency Correction	n Factors					
	Condition	Average Operating Range	Factor	Value				
	Bearing Bore (in)	3.425		3.425 1785				
	Shaft Speed (rpm)	1785	85					
1	Svc Factor (Ft)	Temperature		1				
		Housing below 150 F	1					
		150 to 175 F	0.5					
		175 to 200 F	0.2					
		Above 200 F	0.1					
2	Svc Factor (Fc)	Contamination		1				
		Light, non-abrasive dust	1					
		Heavy, non-abrasive dust	0.7					
		Light, abrasive dust	0.4					
		Heavy, abrasive dust	0.2					
3	Svc Factor (Fm)	Moisture		1				
		Humidity mostly below 80%	1					
		Humidity between 80 and 90%	0.7					
		Occasional condensation	0.4					
		Occasional water on housing	0.1					
4	Svc Factor (Fv)	Vibration		1				
		Less than 0.2 ips velocity, peak	1					
		0.2 to 0.4 ips	0.6					
		Above 0.4	0.3					
5	Svc Factor (Fp)	Position		1				
		Horizontal bore centerline	1					
		45 degree bore centerline	0.5					
		Vertical centerline	0.3					
6	Svc Factor (Fd)	Bearing Design		1				
		Ball Bearings	10					
		Cylindrical and needle roller bearings	5					
		Tapered and spherical roller bearings	1					
	·	Calculated PM cyc	cle (hr)	493				
		Calculated PM cycle	. ,					
		Calculated PM cyc						

Viscosity and Lubricant Selection Step 6. Select the additive type.

- a. A K (Kappa) value of 1 3 is preferred.
- b. There is no benefit to operating above K=4. Higher values create fluid friction losses.
- c. If actual viscosity is > 1 times minimum required, an AW or R&O type lubricant is appropriate
- d. If actual viscosity is ≤ 1 times the allowable minimum, expect to see boundary lubricating films. These require the use of EP type additives.

Moller Boor. Lubricants in Operation.

Grease Housing Fill Amount

Step 7. Select the correct volume

Baffle installed with element bearing

Replacement Volum

- W = bearing width
- O.D. = Outer Diameter
- .005 = Space Factor mr
- .114 = Space Factor in

The SKF Volume Estimate is a qualified estimate of the needed volume of the grease between the elements. The new displaces the old. It is not intended to 'fill' the housing void.

Grease Lubrication Management

There are tools available to help determine the technically correct state.

<u>Grease Wheel, based on</u> bearing size and speed:

- Oil viscosity
- Starting point viscosity
 - EP vs R&O
 - Frequency
 - Volume (grease)

There shouldn't be <u>any</u> guessing and loose estimates!!

Example #2

Lubrication Practice Method for Geared Drives

Gear Oil Requirements

Correct Viscosity

• Determined by tooth geometry, ratio, shaft speed, loading, environmental conditions, lubricant type, operating temperature.

Load Support

• Lubricant must be able to prevent wear and seizure under extremely high unit loads and poor oil film conditions

Corrosion Control

- Lubricant must react instantly at activation temperature, but not below that point.
 - Lubricant must be benign toward soft metal surfaces.

Chemical Stability

• Prevent oxidation at elevated temperature

Photo: John Brown Company

The tooth form dictates the initial frictional mode (sliding, rolling).

Speed, surface area and viscosity determine the operating frictional mode.

Sliding & Rolling

Lubrication Regimes

Film type is determined by oil vis., wheel speed & load, tooth form

Gear Tooth Type	Low Speed Wheel <100 RPM			High Speed Wheel > 1000 RPM			EP				
	Pitch Line	Tip	Root	Pitch Line	Tip	Root					
Spur	Boundary	Boundary	Boundary	EHD	HD	HD	Yes				
R. Angle Spur	Boundary	Boundary	Boundary	EHD	HD	HD	Yes				
Helical	Boundary	Boundary	Boundary	EHD-HD	HD	HD	Yes				
R. Angle Helical	Boundary	Boundary	Boundary	EHD-HD	HD	HD	Yes				
Hypoid	Boundary	Boundary	Boundary	HD	HD	HD	Yes				
Worm	Boundary	Boundary	Boundary	HD	HD	HD	NO				
Open Gear	Boundary	Boundary	Boundary	NA	NA	NA	Yes				
HD	HD = Hydrodynamic Lubrication; EHD = Elasto-hydrodynamic Lubrication										

c. Single engagement Region d. Boundary Film e./f. (Top) Mixed Film f./g. (Bottom) Mixed Film

 Viscosity must flow well enough to coat surfaces with high angular velocities, AND must be Stiff enough to resist the squeezing of the lower speed gears.

- Identify the viscosity designation provided by the OEM 150 cSt to 460 cSt
 - Verify the OEM selection through comparison to AGMA standards.
- 2. The additive type is selected based on the type of materials used in gear tooth construction, and based on the expected lubricant film condition.
 - Non-EP oils (Compounded oils) for Sliding gears (which rely on soft metals that can corrode under common operating conditions)
 - EP oils for non-sliding gears (Spur, helical, bevel, spiral bevel, hypoid)

Falk 'Cube'

- Helical Gears
- Element Bearings
- Moderate input speeds
- Low output speeds
- Durable when properly engineered

Operating Conditions

- Tend to run hot
- Film Conditions
 - EHD, HD
 - Pinion,
 - Bearings
 - Mixed, Boundary
 - Intermediates
 - Final reduction

AGMA Enclosed Gear Classification

ISO VG Grade	R & O	EP	Synthetic
32	0		0S
46	1		1S
68	2	2EP	2S
100	3	3EP	3S
150	4	4EP	4S
220	5	5EP	5S
320	6	6EP	6S
460	7	7EP	7S
680	8	8EP	8S
1000	8A	8AEP	
1500	9	9EP	9S
2200	10	10EP	10S
3600	11	11EP	115
6120-7480 cSt @ 40°C	12	12EP	12S
190-220 cSt @ 100°C	13	13EP	12S

1

Table B-3 - Viscosity grade¹⁾ at bulk oil operating temperature for oils having a viscosity index of 160²⁾

Temp	Pitch line velocity, m/s ³⁾											
°C	1.0 - 2.5	2.5	5.0	10.0	15.0	20.0	25.0	30.0				
10	32	32										
15	46	32	32									
20	68	46	32									
25	68	46	32	32								
30	100	68	46	32								
35	150	100	68	46	32							
40	150	100	68	46	32	32	32					
45	220	150	100	68	46	46	32	-				
50	220	150	100	68	46	46	46	32				
55	320	220	150	100	68	68	46	32				
60	460	220	150	100	68	68	68	46				
65	460	320	220	150	100	100	68	46				
70	680	460	220	150	100	100	100	68				
75	680	460	320	220	150	150	100	68				
80	1000	680	320	220	150	150	150	100				
85	1500	680	460	320	220	220	150	100				
90	1500	1000	680	320	220	220	220	150				
95	2200	1500	680	460	320	220	220	150				
100	3200	1500	1000	460	320	320	220	150				

NOTES:

Consult gear, bearing and lubricant suppliers if a viscosity grade of less than 32 or greater than 3200 is indicated.

Review anticipated cold start, peak and operating temperatures, service duty and range of loads when considering these viscosity grades.

Select the viscosity grade that is most appropriate for the anticipated stabilized bulk oil operating temperature range.

Baseline stabilized bulk oil operating temperature and bearing lubrication requirements

²¹ This table assumes that the lubricant retains its viscosity characteristics over the expected oil change interval. Consult the lubricant supplier if this does not apply.

³⁾ Determine pitch line velocity of all gear sets. Select viscosity grade for critical gear set taking into account cold startup conditions.

Pitch Line Velocity

(Meters Per Second)

= ((P.D. mm * RPM) / 19098))

Assumptions:

1. VI = 160, table for <u>PAO oils ONLY</u>. Full set of tables available at AGMA.

2. Measure Ea. Reduction

3. Select Vis that is best fit for each set of reductions

9005 - EO2 Standard

www.AGMA.org

Lube Selection - Worm Gears

Production Worm Drive

- Worm Gears
- Element or Babbit Brngs
 Two shafts to consider
- Low to medium input speeds
 - Low output speeds
 - Typical Failures gears, bearings

Operating Conditions

- Tend to run cool
- Film Conditions
- Bearings (EHD, HD, ??)
- Gears (Mixed, Boundary ?)
 - Intermediates
 - Final reduction

AGMA Worm Gear Lubricant Selection Guideline

Additional Factors:

Drives with temperatures above the ambient limits, or PLV speeds above 10 m/s require the input of the gear OEM. AGMA recommends lubricant forced feed application and viscosity adjustments for these conditions.

GMA 9005 – EO2, page 23

ISO VG	Pitch Line Velocity of Final Reduction (PLV Meters/Sec = (PD mm x RPM) / 19098; VI = 100				
Ambient Temp °C	PLV <2.25 m/s	PLV > 2.25 m/s			
-40 to - 10	ISO 220	ISO 320			
-10 to +10	ISO 460	ISO 460			
+10 to +55	ISO 680	ISO 460			

Other Notes: a.) Synthetics: PAG's offer improved sliding performance over PAO synthetics. PAO product have been used successfully. b.) At temperatures above 180°F, PAOs provide better lubricity than mineral oils. At temperatures above 200°F, PAGs provide better lubricity than PAO's and MO's. The gear interface contact temperature is 40°F ± above case temperature. c.) Worm gear wear debris (Copper and Iron) is highly catalytic. Lubricants with superior oxidation resistance versus competitive brands is preferred. Although many companies use EP products in worm gear applications, the stronger additive chemistry coupled with the synergy of the combined wear metals makes this less desirable, if not to be expressly avoided. Coupled with wet oil and high temperatures, oxidation rates can be significant.

Lube Selection - Open Gears

Open Gear Drive

- Gear Type?
- □ Helical or Spur
- Input speeds ?
- Output speeds ?
 - Durability?

Operating Conditions

□ Very Heavily Loaded -

• Hi Viscosity grade Lubricant

Tend to run hot (influences: ambient & kiln temp, forced draft)
 Film Conditions (Mixed, Boundary – too slow for HD, EHD)

Kiln Girth Gear – Open Gears

Asphaltic (residual)Made from Refining 'bottoms', or residuals. (AGMA 13EP, 14R, 15R) Viscosity measured @ 100C Same material used to make roofing tarLarge, slow turning, heavily loaded gears -Old gears, degraded -<60 RPM -12 - 40 " faceSpray IntermittentSpray traditionally good Bath application - tends to dry out.Semi- Fluid (grease)Made from polymer thickened bright stock mineral oils, tackifiers (pine tar) and metallic and non- fumed silica)Large, slow - moderate speed, heavily loaded gears . New applications and where gear condition is good . 12 - 40 " faceSpray apple and condition is good . 00 - 180 RPM± . 12 - 40 " faceSpray apple and condition2nd Gen Lube Highly effective as a flushing lubricant Use dependent on gear profile and conditionFluidAppearance of grease but without thickenerLarge, slow turning, heavily loaded gears . New applications and where gear condition is good . 00 - 180 RPM± . 12 - 40 " faceSpray apple and condition2nd Gen Lube Highly effective as a flushing lubricant Use dependent on gear profile and conditionFluidAppearance of grease but without thickenerLarge, slow turning, heavily loaded gears . New applications and where gear condition is good . 00 - 180 RPM± . 12 - 40 " faceSpray apple and . New applications and where gear profile and conditionFluidAppearance of grease but without thickenerNew applications and where gear condition is good . 00 - 180 RPM± . 12 - 40 " faceSpray apple . 12 - 40 " faceFluidAppearance of grease but without thickener<	Lubricant Type	Open Gear Lube General Description	Typical Operating Condition	Applied by	Effectiveness
Semi- Fluid (grease)Highly effective as a flushing lubricant Use dependent on gear profile and conditionHighly effective as a flushing lubricant Use dependent on gear profile and conditionFluid (grease)Made from high viscosity grade syntheticsNew applications and where 	· · · · · · · · · · · · · · · · · · ·	residuals. (AGMA 13EP, 14R, 15R) Viscosity measured @ 100C Same material used to make	loaded gears ■Old gears, degraded ■<60 RPM		traditionally good Bath application –
Fluid synthetics loaded gears Intermittent Highly effective as a flushing lubricant Fluid Appearance of grease but without thickener • New applications and where gear condition is good • Use dependent on gear profile and condition Very tenacious, some require heat • 12 – 40 " face • Bath condition	Fluid	bright stock mineral oils, tackifiers (pine tar) and metallic and non- soap grease thickener (lithium, fumed silica)	 speed, heavily loaded gears New applications and where gear condition is good 60 – 180 RPM± 	Intermittent	Highly effective as a flushing lubricant Use dependent on gear profile and
	Fluid	synthetics Appearance of grease but without thickener	 loaded gears New applications and where gear condition is good 60 – 180 RPM± 	Intermittent	Highly effective as a flushing lubricant Use dependent on gear profile and

AMRRI

11

Ref: AGMA 9005-EO2, page 25, Annex D.

AGMA Application Guidelines

Continuous Application											
Ambient	Tupo of operation	Splash I	ubrication	Pressu lubric	ure-fed ation	Idler immersion					
temperature, °C	Type of operation		e velocity ² v _i >5 m/s	Pitch line v _i <5 m/s		Pitch line velocity ² v _t <1.5 m/s					
10.00	Continuous	220	150	220	150	680 - 1500					
-10 to +10	Reversing or start - stop	460	320	220	150	680 - 1500					
110 to 120	Continuous	460	320	460	320	1500 - 2200					
+10 to +30	Reversing or start - stop	1500	680 - 1000	460	320	1500 - 2200					
30 to 50	Continuous	2200	1500	460	320	4600					
	Reversing or start - stop	2200	1500	460	320	4600					

	Notes: 1. All viscosities			
Ambient	Intermitt	ent spray	Gravity feed or	shown are in mm ² /s at 40°C.
temperature °C	Non-residual lubricant Residual type lubrican		forced drip	2. Pitch line velocity
-10 to +5	4140 cSt at 40°C	428.5 cSt at 100°C	4140 cSt at 40°C	= (Pitch Diameter in millimeters
+5 to +20	6120 cSt at 40°C	857 cSt at 100°C	6120 cSt at 40°C	X RPM) / 19098 = meters/second
20 to 50	190 cSt at 100°C	857 cSt at 100°C	190 cSt at 100°C	meters/second

Refer to AGMA 9005 E02 for a complete description of these charts (www.AGMA.org). See table D-3 of this standard for application rate (ml/sec.) for intermittent application methods.

Planning for Precision Lubrication

Other machine & component types for consideration

- ✓ Plain Bearings
- ✓ Compressors
- ✓ Circulation Systems
- ✓ Chains
- ✓ Cables
- ✓ Couplings
- ✓ Hydraulic Systems

Step 5. Initiate Activates

Begin Route Based Lubrication Practices

Main Panel			×				
Route Explorer							-OX
Generation Systems, Inc Is	Se	q System	Equipment	Component Na	Method	Task Type	Trigger
- Default Route	1	001 Plant Air Compressors _ Utilities	011-5040	Compressor	Reservoir	Sample	90
- Fin Mill 1 Monthly	= 2	001 Plant Air Compressors _ Utilities	001-5125	Compressor	Reservoir	Sample	90
- Fin. Mill 1 Weekly	= 3	001 Plant Air Compressors _ Utilities	001-5126	Compressor	Reservoir	Sample	90
Fin. Mill 2 Monthly	= 4	001 - Plant Air Compressors _ Utilities	001-5130	Compressor	Reservoir	Sample	90
- Fin. Mill 2 Weekly	= 5	001 Plant Air Compressors _ Utilities		and the second se	Reservoir	Sample	90
- Fin. Mill 3 Monthly	= 6	001 Plant Air Compressors _ Utilities			Reservoir	Sample	90
- Fin. Mill 3 Weekly	= 7	001 Plant Air Compressors _ Utilities	and the second se	and the second se	Reservoir	Sample	90
Compressors Monthly	= 8	001 Plant Air Compressors _ Utilities			Reservoir	Sample	90
- Compressors.Weekly	= 9	001 Plant Air Compressors _ Utilities	and the second se	the second se	Reservoir	Sample	90
Labor Gang Daily	= 10				Reservoir	Sample	90
- Labor Gang Monthly	= 11				Reservoir	Sample	90
Labor Gang Weekly	= 12			and the second se	Reservoir	Sample	90
Mobile Garage Monthly	= 13			Compressor	Reservoir	Sample	90
Mobile Garage Weekly	= 14	001 Plant Air Compressors _ Utilities	087-1206	Compressor	Reservoir	Sample	90
Raw Mill 1 Monthly Raw Mill 2 Monthly Raw Mill 2 Weekly 180D Sample Rte, Plnt & (360 Day Sample Route, Pl 30 Day Sample Route, Pla 90 Day Sample Route, Pla 90 Day Sample Route, Pla toute Totals: Tasks: 14 Hours: 0:00							
Addit/ Edit	[*]	Reset			-	Approx 1	Close
						1 70 V V	

Step 5 - Initiate Activates (continued)

Incorporate Modern Tools – Data Collector

- Better record keeping
- Very low administrative cost
- Ability to Inspect and Report
- Cost ranges between
 - \$350 for PDA Compaq
 - \$2K for a industrial, hardened handheld

Step 6. Analyze results against the objective, make adjustments, improve the process

Lubricant based machine analysis

- Reflects effectiveness of contamination control efforts
- Reflects effectiveness of selected lubricants
 - Product performance surface protection
 - Chemical stability longevity

Scheduled work completion analysis

- Reflects effectiveness of SOP development
- Reflects effectiveness of route development
- Reflects effectiveness of labor allocation

Effectiveness Analysis Based on Oil Based Analysis and UE

Test Selection

One Size Doesn't Necessarily Fit All

Rotary Equipment Emphasis should be on particulate quantities and their nature

Particle count for basic sizing and quantification is often a 'key' test Wear particle analysis [ferrography, scanning electron microscope techniques, etc.] for identification and morphology

Reciprocating Equipment

Combustion engines have the greatest contaminant varieties; a greater number of tests might be used Spectro metals are generally very small and, therefore, data are more complete or dependable from this

test

Test Slate Selection

Application	Hydraulic System	Gear Train	Steam Turbine	Gas Turbine	Rotary Compressor	Reciprocating Compressor	Diesel Engine
Spectrometry (metals)	R	R	R	R	R	R	R
Particle Count	R		R-O	R-O	R		
Ferrography (DR/PQ)	0	RFe		Ο	Ο	0	Low/Medium Speed
Particle Debris Filter	0	RCu OFe	R-O	R-O	Ο	0	
Viscosity	R	R	R	R	R	R	R+fuel
Infra-Red (FT-IR)	R	R	R	Ο	R	R	R
Acid Number (AN)	R	R	Ο	Ο	R	R	R-O
Base Number (BN)							R-O
Fuel / Soot							R
Water (Crackle Test)		R	R		Ο	R	R
Water (Karl Fischer KF)	R		0		Ο	Ο	
R – Re	ecommended, O	- Optional				S	
Wear	Particle A	nalysis	Degrada	ation Fac	tors Co	ntaminatio	n Factors
VIII Ref: Jack Poley, CMI						1110	

Test Method Strengths, Weaknesses

Test Category	Ĩ	Test Category			,	Î					$\widehat{\mathbf{G}}$	$\widehat{\mathbf{O}}$	>	ter	сi	phy		• •	Legend
IndicatorDirt & Particles β_1 β_2 $F = F + F + F + F + F + F + F + F + F + $		Contamination	een	~	r (AN	r (Bl	T-IR	ckle	. (KF	hiff's	(GC	nt (Po	netr	s Fil	r, et(ogra	s (Lh	✓ p	Very accurate
IndicatorDirt & Particles β_1 β_2 $F = F + F + F + F + F + F + F + F + F + $		Fluid Degradation	Scr	cosit	mbe	imbe	ed (F	Cra	cher	– Sc	ution	Cour	ctro	Jebri	R-Fer	Ferr	Fine	\checkmark	Accurate
IndicatorDirt & Particles β_1 β_2 $F = F + F + F + F + F + F + F + F + F + $		Wear & Fatigue	'isual	Vise	d Nu	e Nu	ra-R€	pat /	rl Fis	ycol	el Dil	icle (Spe	icle [/ DR	tical	rNet	✓	Poor accuracy
Dirt & Particles $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $		Targeted Symptom	>		Aci	Bas	Infi	S	Ка	Ū	Fue	Part	AE	Part	PQ	Analy	Lase	lob	
Water P_1 P_2 \checkmark P_1 \checkmark P_1 \checkmark P_2 \checkmark P_1 P_2 \checkmark P_2 \sim P_2		Dirt & Particles	Þ									✓ p	✓	þ		$\mathcal{P}_{\mathbf{p}}$	✓ p		
Soot P_{2}		Water	· ·	þ			√	þ	✓p			r					✓		Not applicable
Fuel		Glycol					\checkmark	þ		\checkmark			₽p						
Sulfation & Nitration ↓ Process Contaminants ↓ ↓ ↓ <th></th> <th>Soot</th> <th></th> <th>þ</th> <th></th> <th></th> <th>\checkmark</th> <th></th>		Soot		þ			\checkmark												
Process Contaminants ↓□ ↓□ ↓□		Fuel		Ð			\checkmark	þ			√ p								
Improper Oil Make-up □ Additive Depletion · Oxidation □ □ <td< th=""><th></th><th>Sulfation & Nitration</th><th></th><th></th><th></th><th>þ</th><th>\checkmark</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		Sulfation & Nitration				þ	\checkmark												
Additive Depletion✓✓✓✓Oxidation✓✓✓✓Thermal Degradation✓✓✓✓Wear & Fatigue✓✓✓✓		Process Contaminants	þ				Ð					þ	√ *	þ		\checkmark	Þ		
Oxidation ↓ ↓ ↓<		Improper Oil Make-up		Ð	Ð	Ð	Ð						✓p						
Thermal Degradation P		Additive Depletion			\checkmark	\checkmark	\checkmark									Þ			
Wear & Fatigue		Oxidation		Ð	\checkmark	Ð	\checkmark									þ			B.B.A.I
		Thermal Degradation	Ð	Ð	Ð	Ð	Ð									þ			
Ref.: Condition Monitoring Intl		Wear & Fatigue	Ð									Þ	√ p	Þp	\checkmark	√ p	✓p	0	0007
		Ref.: Co	ndition M	onitoring	Intl												11		

Test Alarm Types, Limits

Parameter	Units	Critical	Caution	Normal	
ICP – Additive	Percent	+/-50	+/- 25	Baseline	
ICP – Wear Debris	Stat	+2 σ	+1σ	<+1 σ	
FTIR – Ox, Ni, S	%	+/-75	+/- 25	Baseline	
FTIR – Additives	%	+/-50	+/- 25	Baseline	
Fe Density (DR, FW, PQ)	Stat	+2 σ	+1σ	Average	
Acid Number	Absolute	1.0 >base	0.2 >Inflection	Inflection Point	
Analytical Ferro.	Qualitative	NA	NA		

Contaminant Limits by Machine Type

Equipment Type	Hydraulics Servo- Controlled	Hydraulics >1000 psi	Hydraulics <1000 psi	Filtered Gearboxes	Unfiltered Gearboxes	Pumps, Bearings, Centrifuges	Compressors	Blowers
Criticality Level		High/Low	High/Low	High/Low	High/Low	High/Low	High/Low	High/Low
Water % Target	<0.03	<0.03/<0.05	<0.03/<0.05	<0.05/<0.1	<0.05/<0.1	<0.03/<0.05	<0.03/<0.05	<0.03/<0.05
Water % Caution	0.03	0.03/0.05	0.03/0.05	0.05/0.1	0.05/0.1	0.03/0.05	0.03/0.05	0.03/0.05
Water % Critical	0.1	0.1/0.2	0.1/0.2	0.3/0.4	0.3/0.4	0.1/0.2	0.1/0.2	0.1/0.2
ISO >4 Target	15	15/16	16/17	18	20/21	18/19	17	18/19
ISO >6 Target	13	13/14	14/15	16	18/19	16/17	15	16/17
ISO >14 Target	11	11/13	13/14	14	16/17	14/15	13	14/15
ISO >4 Caution	16	16/17	17/18	19	21/22	19/20	18	19/21
ISO >6 Caution	14	14/15	15/16	17	19/20	17/18	16	17/18
ISO >14 Caution	12	12/13	13/14	15	17/18	15/16	14	15/16
ISO >4 Critical	17	17/18	18/19	20	22/23	20/21	20	20/21
ISO >6 Critical	15	15/16	16/17	18	20/21	18/19	18	18/19
ISO >14 Critical	13	13/14	14/15	16	18/19	16/17	16	16/17

Ultrasonic Energy Measurement

The shock pulse transducer reacts with a large amplitude oscillation to the weak shock pulses.

Because the 'tuned' to respond to a 32kHz frequency energy, the lower energy caused by machine filtration is 'filtered out'.

The height of the vertical bar represents the strength of the pulse signal that is collected from surface contacts in the load zone.

Ideally the bars would short (against the vertical axis) and would be consistent.

Ref: SPM Corporation

15

Ultrasonic Energy Measurement

Figure 2

This overhung bearing on a motor is monitored with the transducer at the center of the most heavily loaded zone of the bearing, and with the minimum number of surface layers to overcome.

The wave represents a vibration signal in the 0 to 20kHz range (hypothetically) and the transient on the wave represents the surface contact condition from poorly lubricated surfaces.

The shock pulse is measuring the ultrasonic energy produced by the poorly lubricated bearing surfaces experiencing intermittent.

Ref: SPM Corporation

Ultrasonic Energy Measurement

The top chart reflects the type of energy level expected from a well lubricated bearing.

The pulse energy is very low and there are no strong shock events due to a hydrodynamic or elastohydrodynamic fluid film separation.

As the oil film dissipates and the surfaces collide with a greater frequency the 'carpet' level increases.

At the point that the bearing is damaged the transducer will register strong and perhaps inconsistent 'jolts' where the bearing surface is colliding with the race.

The effect is similar to a shock event that occurs when a tire runs through a pothole.

Ref: SPM Corporation

staltantin a halalihi

Shock Pulse Method

✓ Size of Bearing

Recommended Sensor Location for UE Measurements

Step 7, Evaluate and Adjust Course

Annual Review of

- Progress toward improvement targets OA based
- Rate of materials consumption
- Progress toward target on scheduled work 1st time completion rates.
- Knowledge development improvement
- Whether plan is still in line with business needs

Question 7

- If you were going to skip on of the steps, which one would it be?
 - A. Financial Justification.
 - B. Benchmarking and Criticality Assessment.
 - C. Practices Development.
 - D. Program review for changes, updates.

Closing Thoughts

- We didn't discuss lubricants. These are process challenges.
 You can't fix a weak process by picking a different lubricant.
- Precision Lubrication is a fundamental requirement for Dependable Plant Capacity.
- Couple your initiative, particularly capital requirements to your politically empowered reliability initiatives. (Just remember: Oil's oil & grease's grease, but reliability is important!)
- Pursue Precision... Be relentless with the details!
- This is likely the best ROI opportunity on the radar screen. It isn't difficult or expensive to achieve tremendous returns and results.

