



### Creating Functionality on Paper Using Novel Roll to Roll Surface Treatment Equipment: Case Studies

Mika Anttila, Vesa Kunnari Technical Research Centre of Finland



RETHINK PAPER: Lean and Green





#### **Outline**

- Introduction
- Surface treatment concept
  - Main features and coating methods
- First case study: smoother base for printed electronics
- Second case study: bioactive functionalities on fibre based web
- Conclusions
- Acknowledgements



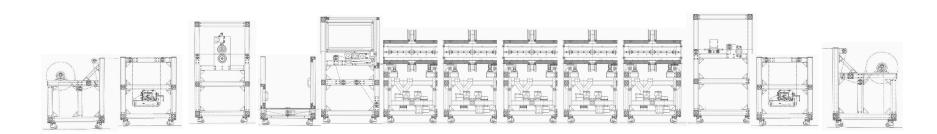
RETHINK PAPER: Lean and Green

#### Introduction

- Forest-based sector structural changes globally
- Pressure to adapt and make innovations in novel areas
- Forest-based sector challenges
  - Replacement of oil-based products with bio-based (non-food)
  - Special, higher value tailored products
  - Reduced environmental impact
  - EU energy policy vs. energy usage
  - Sustainment of employment
  - Sustainable raw material sources



# Surface treatment concept – extending beyond pigments


- Traditional pigment coating research
  - Mills and pigment companies
- Research for such special applications requires cost effective, flexible research equipment
- SUrface Treatment Concept SUTCO is novel surface treatment line
- Possible end users and applications across forest-based customer sectors
  - Converters
  - Various surface treatments
  - Printing houses
  - Non-woven materials
  - Treatment of plastics
  - Bio-Barrier development
  - Simple electronics





### Surface treatment concept

- New revolutionary surface treatment concept for pilot testing & production
- Idea of a fixed process completely discarded
- Single components connected as desired
- Connection of customized components
- Small amount of coating needed
- Sealable coating units & fumes removal during drying
- Fiber based materials and plastics





### Surface treatment concept units

- Un/rewind
- Flexo-type roll coating
- Spray-coating
- Soft-bar coating
- Curtain coating
- Kiss coating
- Air drying units 5 pieces
- IR-drying

- Corona
- Plasma (N<sub>2</sub>-Ar)
- UV
- Egde guidance
- Spreading roller
- PLC-guidance
- Offline calender
- Winder















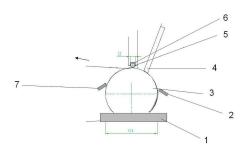






#### Two case studies

- Goal: demonstrate versatility of the surface treatment line
- First case study: to create smoother base for printed electronics
  Demonstrative product: printed conductive pattern
- Second case study: to create bioactive functionality on paper Demonstrative product: simple biosensor




- Goal: smoother base for printed electronics
- How: three different surface coating materials chosen
  - 1. Kaolin
  - 2. Flexo-laquer
  - 3. Thermoplastic starch
- Implementation
  - Base material: precoated (blade) fine paper
  - No pretreatments of web
  - No multiple layers of different coatings
  - Soft bar (rod) coating with selected coating material
  - Calendering





- Development work done
  - Soft bar coating method developed
    - Similar to rod coating



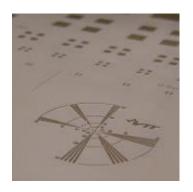


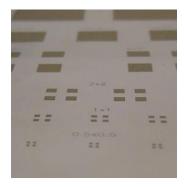


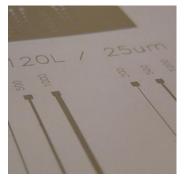


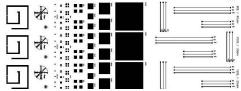
- Development work done
  - Drying section modified
    - Horizontal drying section vs. edge curling







- Enhanced smoothness was produced compared to trial point
- All surfaces smooth enough to print conductive pattern
- Kaolin coated sample produced lowest roughness
- Electrical resistances follow roughness values

|                      | Thickness, µm | Bendtsen roughness, ml/min | Roughness $R_{a,}\mu_{m}$ | Roughness $R_{q,}\mu m$ |
|----------------------|---------------|----------------------------|---------------------------|-------------------------|
| Thermoplastic starch | 64 ± 2        | 0                          | 1,96                      | 2,5                     |
| Kaolin               | $60 \pm 2$    | 0                          | 1,42                      | 1,78                    |
| Flexo-laquer         | 70 ± 1        | 10 ± 1                     | 1,57                      | 1,97                    |
| Lumiflex Ref         | 95 ± 2        | 13 ± 1                     | 1,96                      | 2,43                    |



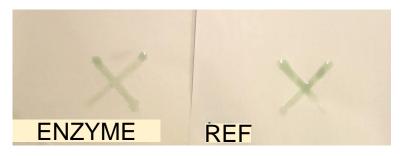




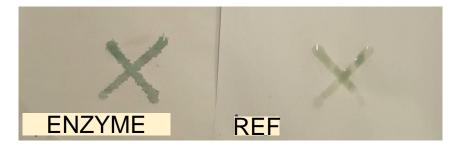







# Second case study: bioactive functionality on paper

- Goal: bioactive functionality on paper as simple biosensor
- How: Enzyme solution sprayed on kaolin precoated base paper
  adding substrate solution creates color reaction
- Implementation:
  - Base material: precoated (blade) fine paper
  - Spray-coating with fine mist
  - Delicate drying on drying section




# Second case study: bioactive functionality on paper

- Application of substrate on enzyme coated web created a color reaction successfully
- Enzyme stayed active during the process of spray application and drying
- Technique developed later used for similar applications



After application of substrate solution



10 seconds after application of substrate solution



#### Conclusions

- First case study
  - new coating method developed and implemented successfully
  - Coating trials followed by calendaring produced even enough surface to print conductive patterns
  - Surface roughness not as low as the surface roughness of plastic
  - Attempts to produce smoother base for printed electronics will continue
- Second case study
  - Simple concept for creating bioactive biosensor created
  - Knowledge from biotechnology and surface treatment combined successfully





#### **Acknowledgements**

- VTT Research scientists: Timo Kaljunen, Annaleena Kokko, Tomi Erho, Thea Sipiläinen-Malm, Mikko Keränen
- Sutco: Coatema Coating Machinery GmbH
- Materials: UPM, Imerys, Sun Chemicals

