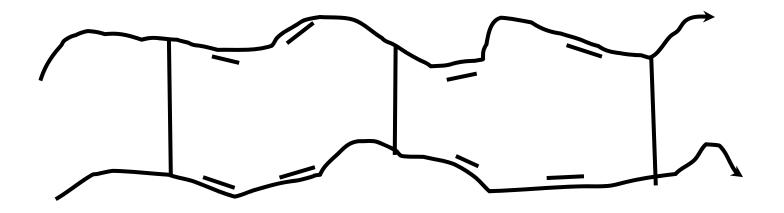


Recent Advances in Rubber Roll Covers for Improved Paper Machine Performance and Reduced Energy Requirements

Dilip De, Ph.D. – Research Manager, Rubber Charles Hunter, Ph.D. – Research Manager, Polyurethane Bill Butterfield – Vice President of Research & Product Engineering

Stowe Woodward, Xerium Technologies Inc. P.O Box 575 Middletown, VA 22645, USA

RETHINK PAPER: Lean and Green


Topics

- Rubber Chemistry/Physical Properties
- Applications
 - Press Rolls
 - Size Press Rolls
 - Yankee Pressure Rolls
 - Coater Backing Rolls
- Conclusions

Structure of a Cured Rubber

- Long polymer chains
- Mainly synthetic
- Have sites for crosslinking
- Different chemicals are incorporated for optimum physical and mechanical properties

3

Types of Rubbers

- NBR Resistant to aliphatic and aromatic solvents. Best combination of physical properties and solvent resistance.
- HNBR Resistant to aliphatic and aromatic solvents. Ozone resistance. Higher temperature rating than NBR.
- CSM High temperature applications. Excellent resistance to strong chemicals and natural aging. Resistance to oils, solvents, and ozone. Excellent release behavior.
- EPDM Good aging properties. Good resistance to steam and oxygenated solvents. Heat resistance.

4

PaperCon 2C

Rubber Formula Ingredients

- Rubber matrix
- Filler Carbon Black, Silica, Clay, nano-fillers, fibers etc. -Reinforcement
- Antioxidant Prevents oxidation of the rubber so it does not degrade (crack or harden).
- Plasticizer Different kinds of oils Helps processing and softens rubber.
- Crosslinking agent Peroxide or Sulfur controls hardness and improves the properties of the rubber.
- Other Misc. Additives

5

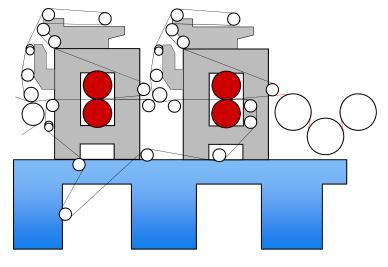
Compounding and Mixing

2-roll mills to blend rubber components

6

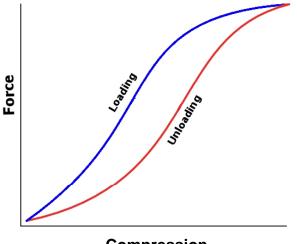
Physical Property Testing

- P&J Pusey and Jones Hardness
- Abrasion resistance
- Tensile and elongation at break
- Tear strength
- Compression set
- Hysteresis
- Dynamic modulus
- Chemical resistance



Press Rolls

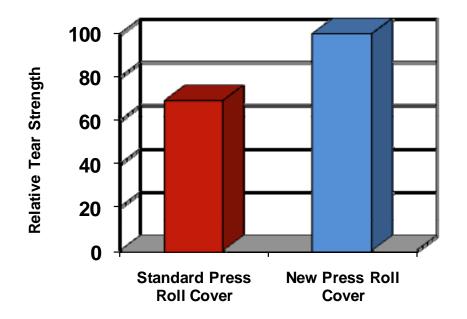
- Typically 15 to 25 P&J high performance rubber covers
 - Engineered Dri-Press® venting
- Required cover properties
 - Superior wear resistance to maintain crown profile and hole geometry
 - Low hysteresis to run cool
 - Superior toughness to withstand impacts at high loads without cracking
 - Superior bonding system
 - Excellent chemical resistance


Press Section

PaperCon 201

Press Rolls Hysteresis

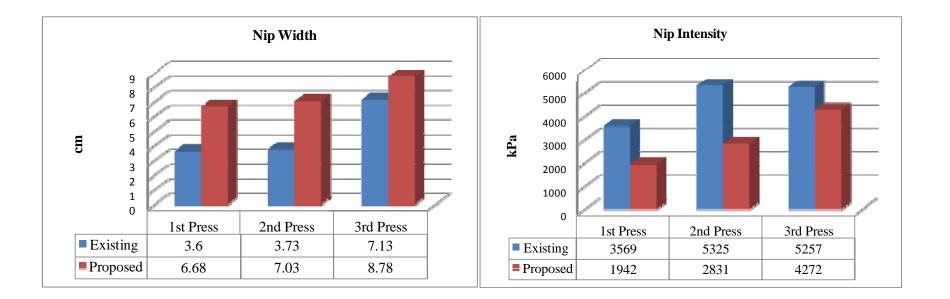
- Hysteresis is the amount of heat generated by a material as it is cyclically loaded and unloaded
- Calculated by area of the hysteresis loop (MTS)
- Lower hysteresis is desirable
- Used in material development
- Results in materials that run at lower temperatures



Compression

Press Rolls Tear Strength

High tear strength of new cover technology withstands high impacts and avoids hole to hole cracking in drilled rolls



10

Case History- Press Roll NA Pulp Machine

Press	Line Load, Speed	Current conditions, water cooled	Proposed, non- water cooled	Water savings
1 st press	96 kN/ m, 183 m/min	0 PJ Steel top/ 20 PJ Rubber cover	70 PJ top/ 20 PJ	12 L/min
2 nd press	149 kN/ m, 183 m/min	20 PJ/20 PJ Rubber	30 PJ/30 PJ	14 L/min
3 rd press	280 kN/ m, 183 m/min	18 PJ/18 PJ Rubber	21 PJ/ 21 PJ	16 L/min

Press Roll Conditions and Water Savings

11

Case History Results- Superwear Xtreme[®]

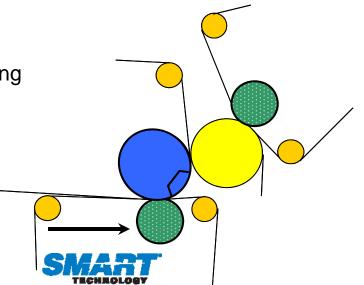
- Removal of water cooling: Savings in water and maintenance of \$55,000/ year
- Increase in nip intensity and dwell time provided 1% dryer sheet entering the dryer
 - steam reduction of 10%
 - \$200,000/ year savings
- Much longer runtime
 - 6 months vs 3 years
- No hole to hole cracking
- No chemical attack on the roll surface

12

PaperCon 2C

Case History: A Soft Press

Problem / Opportunity

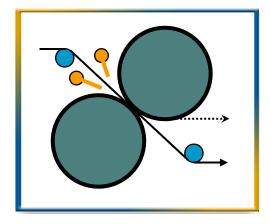

- Decrease cover hardness to increase press loading
- Improve sheet solids
- Improve sheet bulk

Resolution

- Install 40 P&J new technology cover with Dynamic nip technology in 1st press bottom
- Increase press loading
- Use Dynamic nip technology[®] Roll to flatten nip at increased load.

Value

- Increased sheet bulk
- Reduced fiber usage by 3-4%
- Improved CD moisture and caliper profile
- \$700,000 sign off


Machine Type:	Trinip
Grade:	Bleached Board
Speed:	365 mpm (1200 fpm)
Load:	45 Kn/ m (250 PLI)

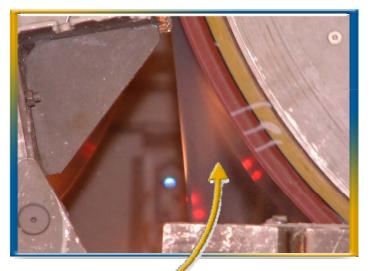
Size Press Rolls

- Soft size press rolls typically 20 to 45 P&J rubber covers
- Hard size press rolls typically 0-1 P&J rubber covers
- Required cover properties
 - High wear resistance to maintain surface profile and longer run time
 - Chemical resistance
 - Hardness stability
 - Minimal thermal crown growth
 - Mark Resistant

PaperCon 2C

Size Press Rolls

- Roll Cover Design
 - Sheet follows hard roll with smooth or 0.8 1.6 μm (20-40 μ-in) Ra finish
 - Smoother finish maintains more intimate contact
 - Soft roll deformation results in surface velocity change in the nip
 - Hard roll deforms less thus maintaining more constant contact
 - Soft roll ground to or 1.2 2.0 μm (30-50 μ-in) Ra.
 - Adequate wetting balance between sheet and size

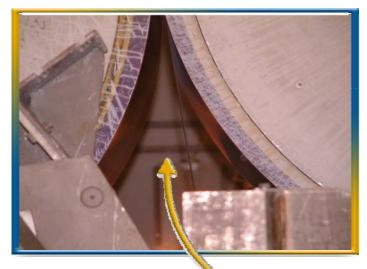

Film Press Case History – Misting Study

Misting test: LWC, 1800 m/min, 8 g/m² Old Technology cover(left) / New Technology cover(right); 50/50 P&J

Paper top side to the right

Paper top side to the left

PaperCon 201

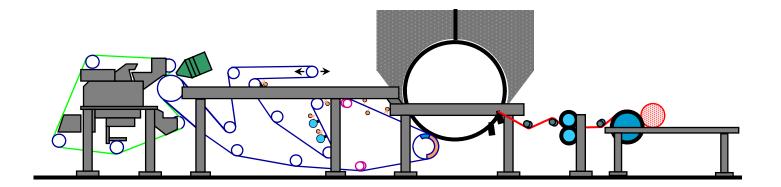

Misting stays on
Old Technology cover side

Film Press Case History – Misting Study Supersize XL[®]

Misting test: LWC, 1800 m/min, 8 g/m² New (left) / New (right); 50/50 P&J

Paper top side to the right

Paper top side to the left

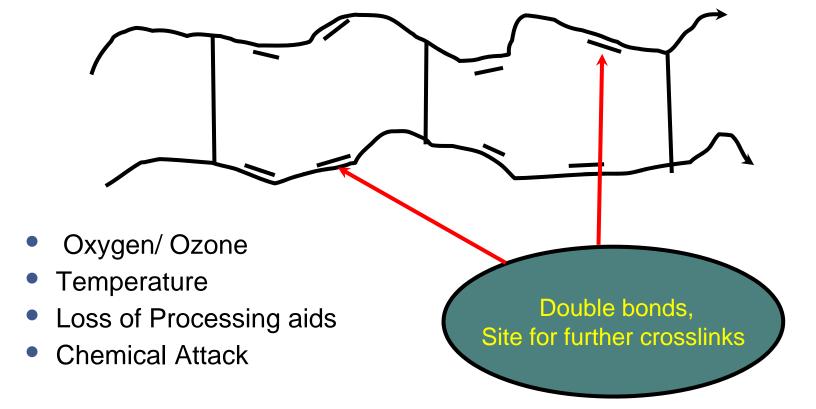

PaperCon 201

No misting with two New Technology covers

Tissue Pressure Rolls

- Typically
 - 30 to 45 P&J high performance rubber covers
 - Engineered venting
- Required cover properties
 - Superior wear resistance to maintain crown profile and hole geometry
 - Excellent chemical resistance
 - Superior bonding system
 - Hardness stability

New Tissue Pressure Roll Covers


- Suction pressure roll and blind drilled pressure roll
- Excellent abrasion resistance
- Excellent hardness stability
- Superior bonding system
- Cooler running covers able to run non-water-cooled

PaperCon 201

Structure of Cured Rubber and Causes of Hardening

20

Hardness Stability- Hyperpress X®

5.0 cm thick samples, 100 °C Oven

21

Case History – Xtreme TS[®] NA Tissue Machine

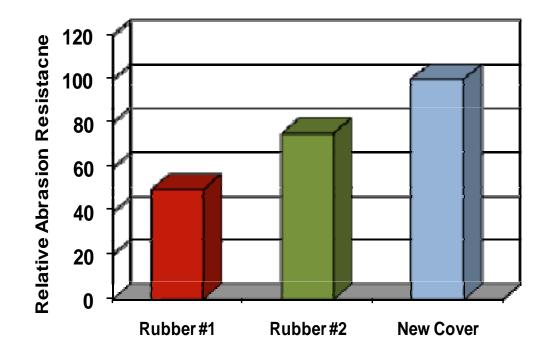
Material	Cover Thickness (cm)	Max Stress (kPa)	Max Temp., bond line (°C)	Required cooling water	
Standard	2.54	2032	89	24L/ min	Water Cooled
New	2.54	2108	76	none	Non-Water Coole

Load79 kN/m (450 pli)Machine Speed1860 m/min (6100 fpm)Cover Diameter76.2 cm (30")Cover Face Length3.25 m (128")Surface Temperature49 °C (120 °F)Felts1

Significant drop in operating temperature

PaperCon 201

Coater Backing Rolls


- Typically
 - 45 to 95 P&J rubber covers
- Required cover properties
 - High wear resistance
 - Excellent resiliency
 - Chemical resistance
 - Mark resistance
 - Hardness stability
 - Crack and tear resistance
 - Surface release properties

PaperCon 201

Coater Backing Rolls *Abrasion Resistance*

24

Case Histories- Hypercoat ® Coater Backing Roll

Improved Run Times

- Board Mill
 - Increased run time 90 to 180+ days
 - Edge cracking eliminated
- LWC Mill
 - Increased run time 90 to 200 days.
- Coated Paper
 - Mill increased run time from 45 to 75+ days

25

Base Technology for High Performance Applications

- Lifegard II base technology high performance, non-watercooled applications
 - Excellent hardness stability
 - Superior bonding system
 - -Cooler running covers
 - All press roll applications
 - Advantages
 - Water and energy savings
 - Lower maintenance cost
 - Avoid water diffusion related failures

PaperCon 201

PaperCon 2011 Page 2685

An Example: Coated Board Machine

Mill Problem

- Water diffusion related cover failures
- 70 gpm water cooling rate for 2 rolls
- Temperature controlled to 130 F
- Water cooling required constant maintenance

Solution

 Apply new non-water cooled base technology

Results

- 1.5 roll cover savings annualized
- Machine downtime minimized
- \$200K annualized savings

PaperCon 201

Conclusions:

- The improved performance of several rubber covers in Press, Size Press, Yankee Pressure, and Coater Backing rolls have been illustrated
- Improved covers are running longer in the machine
- Covers with low hysteresis along with high temperature base system allow roll to run under non-water cooled conditions. It saves energy, maintenance, and the cost of water.
- Case histories were discussed regarding energy savings

28

PaperCon 2C