International Conference on Nanotechnology for Renewable Materials

Heterogeneous chemical grafting of nanocelluloses by mechanochemistry: a potential for the packaging industry

Julia Pescheux-Sergienko, Loreleï Douard, Naceur Belgacem, Julien Bras

Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France

Research localization

Project setting

Cellulose modification

Main disadvantages:

- Toxicity of solvents
- High reaction temperatures
- Long reaction times
- Washing steps

Mechanochemical derivatization

Overview of some of the classic cellulose nanofibrils (CNF) chemical modifications

Rol et al. Recent advances in surface-modified cellulose nanofibrils. 2019.

Mechanochemistry history

1890: Michael Faraday First highlights the mechanical reaction by using a mortar and pestle **1892:** Carey Lea Pioneer of modern mechanochemistry

Demonstration of mechanical forces acting on activation energies

1980: First works of application of mechanochemistry to cellulosic products

2008: Identification of mechanichemistry by IUPAC as one of the emerging and pontential-worthy technologies

20000 on 50 18000 Number scientific papers combining CELLULOSE + papers 40 30 20 10 0 0 **MEHCANOCHEMISTRY** 16000 14000 scientific 12000 10000 8000 of 6000 Number 4000 2013 1983 1993 2003 2000 **Publication year** 1975 1985 1995 2005 2015

Bibliometrics of mechanochemistry and cellulose trough years (Web of Science. 22/03/2023)

Publication year

Main advantages of mechanochemistry:

Shorter reaction

time

Lower reaction

temperatures

- Solvent free
- One-pot reaction
- Comparable yields
- Stereoselectivity

Devices used for mechanochemistry

High-energy milling devices:

A: Drum mill	B: Planetary mill	C: Vibration mill		
D: Attitor	E: Pin mill	F: Rolling mill		

Involved mechanical forces:

Adapted from: P. Baláž et al. Hallmarks of mechanochemistry: from nanoparticles to technology. 2013.

Cellulose modification

Comminution

- Morphological change
- Fragmentation
- Creation of new surface

Structural change

- Amorphisation
- Polymorphic change
- Structural dehydration

Chemical modification

- Decomposition
- Oxydo-reduction
- Complexe formation
- Depolymerisation

Final product

Objectives

Reaction with CNC

Objectives

Reaction with CNC

Set up of the reaction

Cellulose fibres (cotton, CC)

1/3 balls - 1/3 void - 1/3 reagents0.5g of cellulose

Operational parameters:

- Frequency of vibration: 30Hz
- Vibration time: from 5min to 3h
- Milling balls size : 5mm diameter
- Reaction conditions: Ambient air

(+)

 $O = C = N - (CH_2)_{17}CH_3$

Octadecyl Isocyanate (OI)

Objectives

Reaction with CNC

Fibers morphology

SEM images of cotton fibers. UNTREATED

Fibers morphology

SEM images of cotton fibers **TREATED** at 30Hz, **30min**

Fibers morphology

Cotton fibers, untreated Length: 650μm +/- 50μm Width : 25μm

At long times treatment the material tends to homogenize

SEM images of cotton fibers treated at 30Hz, **3hours**. Morfi analysis of fibrous dimensions

Fibers crystallinity

X-Ray Diffraction Crystallography Results after vibratory milling at 30Hz Amorphous substration calculation method

The amorphization is

inevitable at long term

FTIR analysis

Heterogeneity

3600 3100 2600 2100 1600 1100 600 Wavelength [cm-1]

Homogeneity

Infra-Red Spectroscopy analysis of mechanochemical reaction between CC and OI at 30Hz, **30min**. Infra-Red Spectroscopy analysis of mechanochemical reaction between CC and OI at 30Hz, **3hours.**

At a certain time, the reproducibility of the results is achieved

Elemental analysis

Degree of Substitution formula

	H%	N%	O%	C%	C% corrected	DS		The in energy	The input energy is
Cellulose (CC)	6.14	-	49.14	42.47	44.45			allowing tl grafting	
CC-OI-30Hz- 10min	6.35	< 0.05	49.05	43.36	45.38	0.02			
CC-OI-30Hz- 20min	6.56	< 0.05	48.49	44.49	46.56	0.04			
CC-OI-30Hz- 30min	6.79	< 0.05	46.95	45.05	47.15	0.05			

Elemental analysis results for mechanochemically treated cellulose with OI.

of e

X-Ray photoelectron spectroscopy

Binding energy of the decomposed C signal from XPS

X-Ray photoelectron spectroscopy

X-Ray Photoelectron Spectroscopy analysis of cotton fibers treated in vibratory mill at 30Hz for **30min, C decomposition**.

The grafting is mainly

happening on the surface

X-Ray Photoelectron Spectroscopy analysis of cotton fibers treated <u>with octadecyl isocyanate</u> in vibratory mill at 30Hz for **30min**.

Gousse et al. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. 2002

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

DS: 0.05

DSS: 0.36

ΓΑΡΡ

Objectives

Reaction with CNC

Is there CN production?

Separation by successive centrifugation process

RPM	Mass proportion	Size [nm] / PI
1 000	99,08 %	NA
2 000	0,60 %	6123 / 0,8
4 000	0,16 %	7028 / 1
6 000	0,12 %	6530 / 1
8 000	0,04 %	4720 / 1
10 000	0,004 %	3366 / 1
Supernatant after 10 000	0 %	NA

Crossing of gravimetric and DLS measurements for centrifuges material

The nanosized is conceivable

Proof from AFM and TEM

J. Desmaisons. Thesis at Universty Grenoble Alpes. 2018.

Objectives

Reaction with CNC

Set up of the reaction

Cellulose Nano Crystals (CNC, celluforce)

(+)

1/3 balls – 1/3 void - 1/3 reagents <u>1g of CNC</u>

Operational parameters:

- Frequency of vibration: 30Hz
- Vibration time: from 5min to 3h
- Milling balls size : 5mm diameter
- Reaction conditions: Ambient air

Citric Acid Monohydrate (CAM)

CNC modification

CNC modification

XRD analysis of CNC modified with CAM at 30Hz

Infra-Red Spectroscopy analysis of CNC modified with CAM at 30Hz

The amorphization is showered with the addition of the reactant

The grafting is proved by direct and indirect methods

The industrial potential

Expected reaction path

Main envisioned advantages:

- Time and chemical savings
 - No solvents involved
 - Washing steps abolition
- Cellulose derivatized only on the surface
 - Suitable for surface functionalization
 - Lowered "denaturalization"
- Realization of "impossible reactions"

Conclusions

Acknowledgments

Supervisors: Dr. Julien BRAS and Dr. Naceur BELGACEM Co-author: Dr. Loreleï DOUARD

Funding and support:

- University Grenoble Alpes. Grenoble INP. LGP2
- Cellulose Valley Project
 - Fondation Grenoble INP
 - Industrial partners

Help for analysis and services: •

- Sandrine ADACH
 - Thierry ENCINAS
 - Bertine KHELIFI
 - Sonia MOLINA-BOISSEAU

International Conference on Nanotechnology for Renewable Materials

Thank you all for your attention!

Do you have any questions?

Julia.Pescheux-Sergienko@Grenoble-INP.fr

Upscaling mechanochemistry: a challenge

Adapted from: E. Colacino. V. Isoni. D. Crawford. and F. García. 'Upscaling Mechanochemistry: Challenges and Opportunities for Sustainable Industry'. Trends in Chemistry. May 2021.