Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 18,741–18,750 of 18,984 results (Duration : 0.02 seconds)

Filters

Industry

Topics

Content Type

Publications

Level of Knowledge

Committees

Event Type

Collections

Building Better Information Highways -- Networking the Facto

Building Better Information Highways -- Networking the Factory Floor in a Box Plant, 1993 Corrugated Containers Conference Proceedings

Disposal Alternative for Sludge Waste from Recycled Paper and Cardboard, 1993 Engineering Conference Proceedings

Disposal Alternative for Sludge Waste from Recycled Paper and Cardboard, 1993 Engineering Conference Proceedings

Formation and Control of Bleach Plant Scale as a Result of Water Minimization, 1998 Pulping Conference Proceedings

Formation and Control of Bleach Plant Scale as a Result of Water Minimization, 1998 Pulping Conference Proceedings

Preliminary Study on Solvent Flotation De-Inking of Non-Impact Printed Papers, 1997 Recycling Symposium Proceedings

Preliminary Study on Solvent Flotation De-Inking of Non-Impact Printed Papers, 1997 Recycling Symposium Proceedings

New Test Method for the Characterization of Paper/ Melamine/ Reactivity, 1996 Plastic Laminates Symposium Proceedings

New Test Method for the Characterization of Paper/ Melamine/ Reactivity, 1996 Plastic Laminates Symposium Proceedings

Production of Neutral Saltcake in Sub-Atmospheric Chlorine Dioxide Plants, 2010 TAPPI PEERS Conference

Production of Neutral Saltcake in Sub-Atmospheric Chlorine Dioxide Plants, 2010 TAPPI PEERS Conference

Journal articles
Magazine articles
Open Access
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology

ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.

Journal articles
Magazine articles
Open Access
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal October 2021

ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.

Webinars
Data-Driven Decision Making with Process Analytics - Making sense of big data in the pulp and paper industry

Data-Driven Decision Making with Process Analytics - Making sense of big data in the pulp and paper industry This webinar aims to establish best practices for data-driven decision-making in the pulp

Open Access
Filtration efficiency and breathability of selected face masks, TAPPI Journal September 2023

ABSTRACT: Face masks have been used as physical barriers to stop respiratory infections for many years. Due to insufficient and low supply of certified masks, alternative face covers such as face shields, neck gaiters, and fabric reusable masks gained attention during the COVID-19 pandemic. However, for these alternate face masks to fulfill their intended function, they must be effective. Additionally, the level of breathability provided by the makeshift masks must be at a certain level. The work reported in this paper was carried out to determine the relationship between filtration efficiency (FE), breathability, and important physical characteristics of mask substrates. The fiber diameter of the core filter layer was determined using a scanning electron microscope. Five types of face masks (two types of N95, two types of surgical masks, and a 100% knitted cotton fabric) were tested for their FE and breathability using moisture vapor transmission rate (MVTR). The cotton knitted mask had the lowest FE (5.10%•26.47%), while the National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask had the highest FE values (92.10%•99.65%). However, the cotton mask outperformed the N95 in terms of the pressure drop, meaning higher comfort. In general, the N95 face mask provided the best protection against aerosolized particles. According to the regression analysis, the fiber diameter of the mask filter substrate serves as an important predictor of FE of mask substrates. In this study, it was confirmed that fiber diameter is inversely related to the filtration ability. Results show that compact structure with finer fibers will enable higher filtration efficiency. The study lends itself to developing layered face masks to obtain optimum filters with good filtration, better fit, and acceptable comfort for the wearer.