Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 231–240 of 254 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: œ The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. œ Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. œ Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Magazine articles
Open Access
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021

ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HO•) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.

Journal articles
Magazine articles
Open Access
Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective, TAPPI Journal July 2021

ABSTRACT: The pulp and paper industry has an opportunity to play a vital role in breaking the spread of the COVID-19 pandemic through production that supports widespread use of antimicrobial paper. This paper provides a brief review of paper and paper-related industries, such as those producing relevant additives, and R&D organizations that are actively engaged in developing antimicrobial papers. The focus here is on the potential of three nano-additives for use in production of antimicrobial papers that combat coronavirus: nanosilver, nanocellulose, and chitosan. Various recent developments in relevant areas and concepts underlining the fight against coronavirus are also covered, as are related terms and concepts.

Journal articles
Magazine articles
Open Access
Application of spruce wood flour as a cellulosic-based wood additive for recycled paper applications— A pilot paper machine study, TAPPI Journal October 2021

ABSTRACT: This study gives a first insight into the use of wood flour as a plant-based and cellulosic-based alter-native additive for newsprint and paperboard production using 100% recycled fibers as a raw material. The study compares four varieties of a spruce wood flour product serving as cellulosic-based additives at addition rates of 2%, 4%, and 6% during operation of a 12-in. laboratory pilot paper machine. Strength properties of the produced news-print and linerboard products were analyzed. Results suggested that spruce wood flour as a cellulosic-based additive represents a promising approach for improving physical properties of paper and linerboard products made from 100% recycled fiber content. This study shows that wood flour pretreated with a plant-based polysaccharide and untreated spruce wood flour product with a particle size range of 20 μm to 40 μm and 40 μm to 70 μm can increase the bulk and tensile properties in newsprint and linerboard applications.

Journal articles
Magazine articles
Open Access
Corrosion damage and in-service inspection of retractable sootblower lances in recovery boilers, TAPPI Journal October 2021

ABSTRACT: Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler.In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees.This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.

Journal articles
Magazine articles
Open Access
Evaluation of soap recovery efficiency from black liquor — analytical tools, TAPPI Journal April 2023

ABSTRACT: Soap skimmings (“soap”) are typically recovered from black liquor in kraft mills that process a high percentage of softwood. In many mills, the recovery of soap is inefficient, negatively impacting performance of evaporators and recovery boilers and resulting in loss of potential revenue. A thorough evaluation of soap recovery performance in a kraft mill requires measurement of soap content in black liquor at various sampling locations, especially around the soap skimmer.The standard laboratory method for evaluating soap content in black liquor is a complex, multi-step process that relies on solvent extraction and titration; most mills send these samples to an outside laboratory for this analysis. In this study, 100 black liquor samples, with a wide range of soap concentrations, were tested by the standard solvent extraction method. After additional dilution, each sample was also tested for surface tension with a bubble pressure tensiometer. The results were found to correlate very closely with the solvent extraction tests results. This alternate method, using surface tension measurements of diluted black liquor samples, produces rapid results and can be easily implemented in most kraft mills, which would facilitate much more frequent in-house evaluations of soap recovery performance.

Journal articles
Magazine articles
Open Access
Value creation by converting pulp mill flue gas streams to green fuels, TAPPI Journal March 2023

ABSTRACT: Climate change mitigation induces strong growth in renewable electricity production, partly driven by shifts in environmental policies and regulation. Intermittent renewable electricity requires supporting systems in the form of sustainable hydrocarbon chemicals such as transportation fuels. Bulk chemical production fits well into a pulp mill environment, given their large volumes, stable operation, and ample supply of biomass-based carbon feed-stock in the form of flue gases. Until now, the utilization of the flue gases from conventional operation of a pulp mill has received little attention. Harnessing these flue gases into usable products could offer additional value to mill operators, while also diversifying their product portfolio. However, electricity-based fuels and products require extra energy in the conversion step and may not be commercially competitive with current fossil products under the current regulation. There might also be uncertainties about future commodity prices. Thus, the objective of this study is to estimate the economic competitiveness and the added value of selected side products that could be produced alongside conventional pulp and paper products. A typical modern pulp mill is modeled in different product configurations and operational environments, which allows testing of various development paths. This illustrates how the overall energy and mass balance of a pulp mill would react to changes in different final products and other parameters. The focus of the study is in synthetic methanol, which is produced from flue gases and excess resources from the mill, with minimal interference to the pulping process. The results aid in assessing the necessity and magnitude of a premium payment for subsidizing green alter-natives to replace current fossil fuels and chemicals. Additionally, the results function as an indicator of the development state of the pulp and paper industry in the turmoil of climate change regulation. The results indicate that power-to-X systems offer one more viable pathway alternative for broadening the product portfolio of the pulp and paper sector, as well as opening new flexibility measures and services to grid stabilization. Market conditions were found to have a significant impact on the perceived profitability.

Journal articles
Magazine articles
Open Access
Corrosion damage and in-service inspection of retractable sootblower lances in recovery boilers, TAPPI Journal October 2021

ABSTRACT: Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler.In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees.This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.

Journal articles
Magazine articles
Open Access
Impact and feasibility of a membrane pre-concentration step in kraft recovery, TAPPI Journal May 2021

ABSTRACT: Emerging robust membrane systems can perform the first section of black liquor (BL) concentration by separating clean water from the black liquor stream using only mechanical pressure. By doing so, they can reduce the steam and energy required for BL concentration. Because of the high osmotic pressure of strong BL, a membrane system would not replace evaporators but would operate in series, performing the first section of BL concentration. In this work, we use a multi-effect evaporator (MEE) model to quantify the steam and energy savings associated with installing membrane systems of different sizes. When maintaining a constant BL solids throughput, we find that a pulp mill could reduce steam usage in its evaporators by up to 65%. Alternatively, a membrane system could also serve to increase BL throughput of the recovery train. We find that a membrane system capable of concentrating BL to 25% could double the BL solids throughput of a mill’s evaporators at the same steam usage. We also demonstrate that installing a membrane system before an MEE would minimally affect key operating parameters such as steam pressures and BL solids concentrations in each effect. This indicates that installing a membrane pre-concentration system would be nonintrusive to a mill’s operations.

Journal articles
Magazine articles
Open Access
Non-process elements in the recovery cycle of six Finnish kraft pulp mills, TAPPI Journal March 2023

ABSTRACT: In this work, the aim was to study the distribution and accumulation of the non-process elements (NPEs) in the recovery cycle of Finnish pulp mills and look at whether the geographical location (North vs. South) correlates with the current Finnish NPE levels. In addition, a comparison to older similar Finnish measurements was made with an attempt to analyze the reasons behind differences in the most typical non-process elements, aluminum (Al), silicon (Si), calcium (Ca), phosphorus (P), magnesium (Mg), manganese (Mn), chlorine (Cl), and potassium (K), taking into account the main elements in the white liquor, sodium (Na) and sulfur (S). The extensive laboratory results gained in this study are from seven sampling points at six pulp mills and present analytical data of metal concentrations. The data obtained presents an update to previous NPE studies. The levels found did not statistically differ between North and South Finland. The NPE levels, apart from phosphorus, found in Finnish pulp mills today have not changed considerably compared to the levels in earlier investigations in the 1990s. In the newest data, the phosphorus concentration was consistently higher in the as fired black liquor, electrostatic precipitator (ESP) ash, lime mud, and green liquor than in the previous results. In addition, the levels of Al, Si, Ca, P, and Mg in recovery boiler ESP ash were consistently higher compared to the older results. As the mills start to close their systems more, a stronger accumulation of NPEs can be expected, increasing the likelihood of more operational problems in the process. Further understanding of where the NPEs accumulate and how they can be most effectively removed will be valuable knowledge in the future.