Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Quantification of vegetable oil in recycled paper, TAPPI JOURNAL September 2020
ABSTRACT: Vegetable soybean oil is commonly used in cooking foods that are packaged in takeaway paper-board containers. Vegetable oil is hydrophobic, and in sufficiently high concentration, could interfere with interfiber bonding and result in paper strength loss. In order to quantify the effect of oil on the resulting paperboard strength, it is necessary to quantify the oil content in paper. A lab method was evaluated to determine the soybean oil content in paper. Handsheets were made with pulps previously treated with different proportions of vegetable oil. Pyrolysis gas chromatography-mass spectrometry (pyGCMS) was used to quantify the amount of oil left in the handsheets. The results revealed a strong correlation between the amount of oil applied to the initial pulp and the amount of oil left in the handsheets.In addition, the effect of vegetable oils on paper strength may be affected by the cooking process. Vegetable oil is known to degrade over time in the presence of oxygen, light, and temperature. The vegetable oil was put in an oven to imitate the oil lifecycle during a typical pizza cooking process. The cooked oil was then left at room temperature and not protected from air (oxygen) or from normal daylight. The heated, then cooled, oil was stored over a period of 13 weeks. During this time, samples of the aged oil were tested as part of a time-based degradation study of the cooked and cooled oil.
Journal articles
Magazine articles
Enzymatic treated viscose fibers functionalized by chitosan, TAPPI JOURNAL August 2018
Enzymatic treated viscose fibers functionalized by chitosan, TAPPI JOURNAL August 2018
Journal articles
Magazine articles
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020
ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.
Journal articles
Magazine articles
Characterization of chia plant (Salvia hispanica) for pulping, TAPPI Journal October 2020
ABSTRACT: In this paper, chia plant was characterized in terms of chemical, morphological, and anatomical properties. Chia plant was characterized with low a-cellulose (30.5%); moderate lignin (23.2%) with syringyl to guaiacyl ratio of 1.41; and shorter fiber length (0.67 mm) with thinner cell wall (1.91 µm) and good flexibility coefficient (71.44). Anatomical features showed that chia plant consists of vessels, fibers, parenchyma cells, and collenchyma cells. Chia plant pulping was evaluated in soda-anthraquinone (soda-AQ) and formic acid/peroxyformic acid (FA/PFA) processes. Chia plant was difficult to delignify in the alkaline process. The FA/PFA process produced higher pulp yield at the same kappa number than the soda-AQ process. Unbleached soda-AQ chia pulp exhibited good properties in terms of tensile, bursting, and tearing strengths, even at the unrefined stage, due to high drainability of the pulps. Alkaline peroxide bleached FA/PFA pulp exhibited better papermaking properties and 2% higher brightness than the D0(EP)D1 bleached soda-AQ pulp.
Journal articles
Magazine articles
Evaluation of novel drum chipper technology: pilot-scale production of short wood chips, TAPPI Journal October 2019
ABSTRACT: Impregnation of wood chips with acidic pulping liquors is improved when using short chip lengths. If the average wood chip length is too short, conventional chipping technology will generate excess small material, such as pin chips and fines. The possibility of using newly developed drum chipping technology to produce short-length wood chips was evaluated with a pilot drum chipper operating at different drum velocities and in-feed angles. With a drum velocity of 30 m/s, the average wood chip lengths and the combined fractions of pin chips and fines were 24 mm and 3.3%, 22 mm and 4.2%, and 17 mm and 8.5%. The highest fractions of total accept chips (large and small accepts), 89% to 90% without screening, were observed for drum velocities of 30•34 m/s and average wood chips lengths of 21•22 mm. The results indicate the potential of drum chipping technology for producing short wood chips with relatively high fractions of accept chips and tolerable fractions of pin chips and fines.
Journal articles
Magazine articles
Development of converging-diverging multi-jet nozzles for molten smelt shattering in kraft recovery boilers, TAPPI Journal March 2021
ABSTRACT: The effective shattering of molten smelt is highly desired in recovery boiler systems. Ideally, shatter jet nozzle designs should: i) generate high shattering energy; ii) create a wide coverage; and iii) minimize steam consumption. This study proposes a novel converging-diverging multi-jet nozzle design to achieve these goals. A laboratory setup was established, and the nozzle performance was evaluated by generating jet pressure profiles from the measurement of a pitot tube array. The results show that the shatter jet strength is greater with a large throat diameter, high inlet pressure, and a short distance between the nozzle exit and impingement position. Increasing the number of orifices generates a wider jet coverage, and the distance between the orifices should be limited to avoid the formation of a low-pressure region between the orifices. The study also demonstrates that an optimized converging-diverging multi-jet nozzle significantly outperformed a conventional shatter jet nozzle by achieving higher energy and wider coverage while consuming less steam.
Journal articles
Magazine articles
Comparing a linear transfer function-noise model and a neural network to model boiler bank fouling in a kraft recovery boiler, TAPPI Journal, July 2024
ABSTRACT: Boiler bank fouling reduces heat transfer efficiency in kraft recovery boilers. Here, we model the relationships between boiler parameters and boiler bank pressure drop, an indicator of fouling, based on recovery boiler operating data. We compared two models: an autoregressive integrated exogenous (ARIX) model and a feedforward neural network. The ARIX model better simulates boiler bank pressure drop compared to the neural network (R2 of 0.64 vs. 0.58). Based on the ARIX model, we identified six boiler parameters that significantly influence boiler bank fouling and their relative contributions. Finally, we demonstrate how the models can simulate boiler bank pressure drop given artificial perturbations in boiler parameters.
Journal articles
Magazine articles
Low-temperature precausticizing — a hopeful approach for green liquor desilication, TAPPI JOURNAL February 2017
Low-temperature precausticizing — a hopeful approach for green liquor desilication, TAPPI JOURNAL February 2017
Journal articles
Magazine articles
Continuous digester process safety improvements • Stress corrosion cracking and overpressure protection lessons learned and opportunities, TAPPI Journal October 2024
ABSTRACT: Georgia-Pacific has recent experience with continuous digester stress corrosion cracking (SCC) repairs where the extent of SCC was more than previous spot inspections had predicted (one digester had anodic protection, one did not). This paper offers case studies of reviewed and improved digester inspections by use of “boat” samples to quantify the depth of cracking mechanism. Boat sample test data is used to support repair recommendations based on hardness testing. Georgia-Pacific also reviewed overpressure protection systems and corrected gaps found in these systems. These included updating to the latest original equipment manufacturer (OEM) designs and formalizing functional testing procedures and practices. This review of digester inspection, testing, and repairs since 2020 provides: (1) a basis for including a 3rd party corrosion expert to be a part of inspections; (2) removes the use of power-wire brushes; (3) enhances digester inspection with 100% phased-array ultrasonic testing to detect SCC; and (4) ensures overpressure protection design and testing is aligned with corporate needs and the site-specific challenges.
Journal articles
Magazine articles
Case study: Paper mill power plant optimization—balancing steam venting with mill demand, TAPPI Journal June 2020
ABSTRACT: Most Power departments are tasked with generating steam to support mill wide operations, generate electricity, and reduce operating costs. To accomplish these tasks, power boilers generate high pressure steam that is reduced to intermediate and low pressures for process utilization in the mill by means of steam turbine generator extraction or pressure reducing valves. The most economical method to reduce steam pressure is the use of steam turbine generators, as electricity is generated from the steam when it is reduced in pressure. Electricity that is produced by these generators provides a substantial financial benefit and helps offset overall operational costs. To achieve tangible financial gains, the mill must evaluate the overall cost of steam production and the price of electricity.The current work provides a case study of power plant optimization that evaluated electricity production and steam production costs balanced with mill steam demand. Process and cost optimization led to a significant reduc-tion in low pressure steam venting, resulting in reduced fuel consumption and reduced operating cost.