Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1–10 of 62 results (Duration : 0.008 seconds)
Journal articles
Magazine articles
Open Access
Eucalyptus black liquor properties in a lignin extraction process: density, dry solids, viscosity, inorganic, and organic content, TAPPI Journal March 2023

ABSTRACT: Extracting lignin from black liquor is becoming more common, although only a few research papers discuss the impact of the process on the liquor’s primary properties. This work aims to determine the changes in black liquor properties as it undergoes a lignin extraction process using carbon dioxide (CO2). A diluted eucalyptus black liquor sample (DBL) was acidified with CO2 to a final pH of 8.5. After filtration, the kraft lignin was removed, and the filtrated lignin lean black liquor (LLBL) was collected. Five acidified black liquors (ABL) samples were collected during acidification at pH 10.5; 10.0; 9.5; 9.0; and 8.5. The samples were analyzed regarding lignin content in solution, sodium carbonate (Na2CO3), sodium sulfate (Na2SO4), density, dry solids content, and viscosity. While Na2SO4 remained almost constant, Na2CO3 presented an enormous increase in its concentration when comparing DBL with LLBL. As pH decreased, the lignin content in the solution was also reduced due to lignin precipitation. The results showed similar behavior for dry solids, density, and viscosity of the supernatant, but an increase in density was observed around pH 9.00. In light of this, the density of LLBL turns out to be closer to the one in the initial DBL. The significant increase in carbonate content could explain this behavior during acidification with CO2 once the inorganic content significantly influences the property. The viscosity was determined from 10 s-1 to 2000 s-1. We observed a Newtonian behavior for all samples. The increase in carbonate content in the sample is crucial information to the recovery cycle, especially for calculating the mass and energy balance when targeting the use of the LLBL.

Journal articles
Magazine articles
Open Access
Displacement washing of softwood pulp cooked to various levels of residual lignin content, TAPPI Journal September 2021

ABSTRACT: This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.

Journal articles
Magazine articles
TAPPI Journal Summaries,Paper360º July/August 2021

TAPPI Journal Summaries,Paper360º July/August 2021

Journal articles
Magazine articles
TAPPI Journal Summaries, Paper360º July/August 2019

TAPPI Journal Summaries, Paper360º July/August 2019

Journal articles
Magazine articles
TAPPI Journal Summaries, Paper360º January/February 2020

TAPPI Journal Summaries, Paper360º January/February 2020

Journal articles
Magazine articles
TAPPI Journal Summaries, Paper360º January/February 2021

TAPPI Journal Summaries, Paper360º January/February 2021

Journal articles
Magazine articles
Open Access
Editorial: 2018 TAPPI Journal features diverse content, TAPPI Journal November 2018

Editorial: 2018 TAPPI Journal features diverse content, TAPPI Journal November 2018

Journal articles
Magazine articles
TAPPI Journal Summaries, November/December 2023 Paper360º

Journal articles
Magazine articles
TAPPI Journal, Paper360º January/February 2023

Journal articles
Magazine articles
TAPPI Journal Summaries, Paper360º September/October 2019

TAPPI Journal Summaries, Paper360º September/October 2019