Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1–10 of 171 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Recovery boiler back-end heat recovery, TAPPI Journal March 2023

ABSTRACT: Sustainability and efficient use of resources are becoming increasingly important aspects in the operation of all industries. Recently, some biomass-fired boilers have been equipped with increasingly complex condensing back-end heat recovery solutions, sometimes also using heat pumps to upgrade the low-grade heat. In kraft recovery boilers, however, scrubbers are still mainly for gas cleaning, with only simple heat recovery solutions. In this paper, we use process simulation software to study the potential to improve the power generation and energy efficiency by applying condensing back-end heat recovery on a recovery boiler. Different configurations are considered, including heat pumps. Potential streams to serve as heat sinks are considered and evaluated. Lowering the recovery boiler flue gas temperature to approximately 65°C significantly decreases the flue gas losses. The heat can be recovered as hot water, which is used to partially replace low-pressure (LP) steam, making more steam available for the condensing steam turbine portion for increased power generation. The results indicate that in a simple condensing plant, some 1%•4% additional electricity could be generated. In a Nordic mill that provides district heating, even more additional electricity generation, up to 6%, could be achieved. Provided the availability of sufficient low-temperature heat sinks to use the recovered heat, as well as sufficient condensing turbine swallowing capacity to utilize the LP steam, the use of scrubbing and possibly upgrading the heat using heat pumps appears potentially useful.

Journal articles
Magazine articles
Open Access
On the usage of online fiber measurements for predicting bleached eucalyptus kraft pulp tensile index — an industrial case, TAPPI Journal July 2022

ABSTRACT: Cellulose pulp’s physical-mechanical properties are determined by laboratory tests obtained from prepared handsheets. However, this procedure is time intensive and presents a lead time until the results are available, hindering its utilization for monitoring and decision-making in a pulp mill. In this context, developing real-time solutions for physical-mechanical properties prediction is fundamental. This work applied a mathematical modeling approach to develop a soft sensor for tensile index monitoring. The mathematical model considers online morphology measurements obtained from the last bleaching stage outlet stream and important process variables for tensile index prediction. The results obtained are satisfactory compared to laboratory results, presenting a mean absolute percentual error of 2.5%, which agrees with the laboratory testing method’s reproducibility.

Journal articles
Magazine articles
Open Access
Kraft pulp bleaching with a P-stage catalyzed by both bicarbonate and TAED, TAPPI Journal July 2019

ABSTRACT: Peroxide bleaching of softwood and hardwood (eucalypt) kraft pulps was performed in solutions of sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), and sodium hydroxide (NaOH). The conventional P stage (hydrogen peroxide + sodium hydroxide; H2O2 + NaOH) was the most effective brightening system without an additional activator. However, peroxide activation by bicarbonate anion (HCO3•) was obvious in all cases where NaHCO3 or Na2CO3 was used. When N,N,N’,N’-tetraacetylethylenediamine (TAED) was added to the bleaching sys-tem, Na2CO3 as the alkali source afforded equal or slightly higher bleached brightness compared to NaOH usage for both the softwood and hardwood pulps. This outcome is attributed to simultaneous peroxide activation by HCO3• and TAED. When applied to the eucalypt pulp, the H2O2/Na2CO3/TAED bleaching system also decreased the bright-ness loss due to thermal reversion.

Journal articles
Magazine articles
Open Access
Development of a fast brightness testing method for mechanical pulp based on microwave oven drying, TAPPI Journal June 2020

ABSTRACT: Brightness is an important quality parameter for pulp products, and it is important to have reliable measurement of pulp brightness in a timely manner for process control and/or quality control purposes. In these circumstances, a quick testing method for pulp brightness is highly desirable.A rapid handsheet brightness testing method for lignin-rich mechanical pulp has been developed, which is based on the use of tap water to make handsheets and microwave ovens to rapidly dry the handsheet. Microwave oven fast drying decreased the handsheet brightness of mechanical pulp by 5•6 points due to the lignin-originated discol-oration reactions. The spray of ascorbic acid and ethylenediaminetetraacetic acid (EDTA) solutions to the handsheet can effectively inhibit these lignin discoloration reactions.With 0.2% ascorbic acid and 0.2% EDTA spraying on the wet pulp handsheet, the brightness of the handsheet from a peroxide-bleached stone groundwood pulp after the microwave oven fast drying method was similar to that obtained from the same pulp but following TAPPI Standard Test Method T 272 sp-12 “Forming handsheets for reflectance testing of pulp (sheet machine procedure)”. The effect of handsheet dryness on the handsheet brightness was also studied, and the results showed that the brightness reading was almost constant in the dryness range of 70% to 90%. The method developed is a reliable, fast brightness testing method for lignin-rich pulp that is of practical interest in industrial operations.

Journal articles
Magazine articles
Open Access
Eucalyptus black liquor properties in a lignin extraction process: density, dry solids, viscosity, inorganic, and organic content, TAPPI Journal March 2023

ABSTRACT: Extracting lignin from black liquor is becoming more common, although only a few research papers discuss the impact of the process on the liquor’s primary properties. This work aims to determine the changes in black liquor properties as it undergoes a lignin extraction process using carbon dioxide (CO2). A diluted eucalyptus black liquor sample (DBL) was acidified with CO2 to a final pH of 8.5. After filtration, the kraft lignin was removed, and the filtrated lignin lean black liquor (LLBL) was collected. Five acidified black liquors (ABL) samples were collected during acidification at pH 10.5; 10.0; 9.5; 9.0; and 8.5. The samples were analyzed regarding lignin content in solution, sodium carbonate (Na2CO3), sodium sulfate (Na2SO4), density, dry solids content, and viscosity. While Na2SO4 remained almost constant, Na2CO3 presented an enormous increase in its concentration when comparing DBL with LLBL. As pH decreased, the lignin content in the solution was also reduced due to lignin precipitation. The results showed similar behavior for dry solids, density, and viscosity of the supernatant, but an increase in density was observed around pH 9.00. In light of this, the density of LLBL turns out to be closer to the one in the initial DBL. The significant increase in carbonate content could explain this behavior during acidification with CO2 once the inorganic content significantly influences the property. The viscosity was determined from 10 s-1 to 2000 s-1. We observed a Newtonian behavior for all samples. The increase in carbonate content in the sample is crucial information to the recovery cycle, especially for calculating the mass and energy balance when targeting the use of the LLBL.

Journal articles
Magazine articles
Open Access
Displacement washing of softwood pulp cooked to various levels of residual lignin content, TAPPI Journal September 2021

ABSTRACT: This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.

Journal articles
Magazine articles
Open Access
Displacement washing of softwood pulp cooked to various levels of residual lignin content, TAPPI Journal September 2021

ABSTRACT: This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.

Journal articles
Magazine articles
Open Access
Biofuels in lime kilns • Operating experience in the Nordic pulp and paper industry, TAPPI Journal October 2024

ABSTRACT: The lime reburning process is a central part of the chemical pulp mill. It is energy intensive and consumes large amounts of fossil fuel, globally consuming about 50 terawatt-hours (TWh) of fuel per year. Conversion to operation with biofuel is interesting, both to reduce carbon dioxide emissions and to reduce costs. Researchers interviewed managers in mills that use solid, liquid, or gasified biofuels to replace fuel oil or natural gas in their lime kilns, and they conducted surveys related to fuel consumption and operations and maintenance. In Sweden and Finland, there were ten mills in 2020 using biomass powder or gasified biomass as the primary fuel, and two more installations were under construction. There were also nine installations in operation or under construction outside the Nordic countries. Fourteen mills in Sweden and two mills in Finland used tall oil pitch as the main fuel. Fuel consumption in Swedish lime kilns was 3.8 TWh in 2020, and 90% of this energy was supplied with biofuels. Of about 4.2 TWh used in Finnish lime kilns, approximately 45% was supplied with biofuels. Developments in the design of the fuel supply system include belt dryers being used in all new installations and mass flow metered dosing systems being used in most new pulverized fuel installations. Bark gasifiers have increased considerably in size. Lignin powder firing has been established as a proven option. A solution for many Swedish and Finnish mills is the use of tall oil pitch as a replacement for fuel oil.

Journal articles
Magazine articles
Open Access
In-situ green synthesis and adsorption on methylene blue of copper-based metal organic framework/cellulose/chitosan (CCTSA/HKUST-1) composite aerogel, TAPPI Journal October 2024

ABSTRACT: In order to explore the application of metal-organic frameworks (MOFs) in environmental and water treatment fields, a new composite aerogel of HKUST-1/cellulose/chitosan (CCTSA/HKUST-1) with better hydrostability was synthesized by an in-situ synthesis method combining covalent cross-linking and solvothermal methods as an efficient adsorbent for methylene blue (MB). The composite aerogel (CCTSA) obtained by covalent cross-linking of cellulose (CE) and chitosan (CTS) exhibited excellent stability under strong acid and solvent-thermal conditions. With the increase of CTS content, it was beneficial to the in-situ synthesis of HKUST-1, as well as to increase the mass loading rate of HKUST-1 to 37.06%, while the Brunauer-Emmett-Teller (BET) specific surface area of CCTSA/HKUST-1 composite aerogel reached 945.123 m2·g-1, which was much higher than that of the CCTSA composite aerogel (14.489 m2·g-1). The CCTSA/ HKUST-1 composite aerogel exhibited excellent adsorption capacity (537.6 mg·g-1) on MB solution, and cyclic adsorption could be achieved. This study proposes a concept of valorization of alkaline peroxide mechanical pulping (APMP) waste liquor to hemicellulose-based hydrogel. This hemicellulose-based hydrogel exhibits a sensitive temperature/pH dual response. Hemicellulose-based hydrogels swell or shrink through the change of hydrogen bond/electrostatic repulsion/charge screening. They also show good water absorption and water retention properties.

Journal articles
Magazine articles
Open Access
On the diagnosis of a fouling condition in a kraft recovery boiler: combining process knowledge and data-based insights, TAPPI Journal March 2023

ABSTRACT: Fouling is still a major challenge for the operation of kraft recovery boilers. This problem is caused by accumulation of ash deposits on the surfaces of heat exchangers in the upper part of the boiler over time. The first consequence is the reduction of steam production due to loss of heat transfer and, finally, the shutdown of the boiler due to clogging. The present work investigated the operational condition of a modern kraft boiler under a critical fouling condition. This boiler had even faced a manual cleaning due to a clogging event. This analysis combined process knowledge, plant team experience, and a data-driven approach, given the complexity of the process. In this sense, historical data covering this critical period of operation were collected. After a cleaning procedure, they were used to obtain a predictive neural network model for the flue gas pressure drop in the boiler bank, which is an indirect measure of ash deposit accumulation. Once validated, it was used for sensitivity analysis, with the aim of quantifying the effects of the model inputs. Five variables out of eighteen accounted for nearly 60% of the total effect on pressure drop. Namely, primary air temperature (21.6% of the total effect) and flow rate (11.1%), black liquor flow rate (9.9%) and temperature (8.4%), and white liquor sulfidity (8.6%). The analysis of these results mainly suggested an excess of carryover, which composes the ash deposits. Recommended actions to mitigate the fouling condition involved adjustments to the primary air system before the more drastic solution of reducing the boiler load.