Black Liquor and Evaporators Properties, Principles and Equipment

Jarmo Kaila

Andritz Inc.

2021 TAPPI Kraft Recovery Course

Acknowledgement

- **This presentation borrows partly from what was used over the years for the TAPPI Kraft Recovery Course by**
	- **Jean-Claude Patel**
	- **Jason B. Smith**
	- **Dr. David Clay**
	- **Dr. Chris Verrill**
	- **Dr. William J. Frederick Jr.**
	- **Dr. Nikolai DeMartini**
	- **Dr. Honghi Tran**
- **Use of earlier material is gratefully acknowledged in the presentation where applicable**

Outline

• Black liquor composition

• Black liquor properties

- **Boiling point rise**
- Viscosity
- Density / specific gravity
- Target properties

Evaporator equipment

- **Principles and heat transfer**
- **Multiple effect evaporation**
- **Evaporator types**
- Materials of construction

Black Liquor Composition (An example & 75% dry solids)

Black Liquor Dry Solids - Inorganics

What Happens During Evaporation?

Black Liquor Boiling Point Rise

Black liquor boils at temperatures above water boiling point

Boiling Point Rise vs. Solids

BPR at Each Effect

Viscosity

Fluid viscosity indicates the magnitude of internal friction

■ Corresponds to the informal concept of "thickness": for example, syrup **has a higher viscosity than water**

Viscosity Impacts

- Heat transfer (*decreases with increasing viscosity*)
- Power usage in recirculation pumps
- **Pumpability problems at very high viscosities (high solids and low temperature black liquor)**

What Determines BL Viscosity?

- **Dry solids content**
- **Temperature**
- **Wood species**
- **Cooking conditions**
- **Residual alkali**
- **Moon phase** \odot

Ideally measured at operating conditions

Black Liquor Viscosity

Black Liquor Dry Solids Content, wt - %

Viscosity vs. Residual Alkali

Milanova, E. and Doris, G.M., J. Pulp & Paper Sci., 16 (3), J94-101 (1990)

Black Liquor Density at 25 °C

Affects black liquor mass flow rate calculation

Frederick, W.J., Kraft Recovery Boilers – Chapter 3 (2019)

Black Liquor Density

Can be approximated using equations below:

 $\rho_{25} = 997 + 649$ S

 p_{25} = black liquor density at 25^oC, kg/m³

 $\overline{}$ S = black liquor dry solids mass fraction

$$
\frac{\rho_T}{\rho_{25}} = 1 - 3.69 \times 10^{-4} (T - 25) - 1.94 \times 10^{-6} (T - 25)^2
$$

Ĵ $p_T =$ black liquor density at temperature T, kg/m³ $T =$ temperature, $^{\circ}C$

Frederick, W.J., Kraft Recovery Boilers – Chapter 3 (2019)

Black Liquor Specific Gravity

- **Important for performance calculations**
- **ºBaumé (hydrometer up to 50% solids), must be corrected for temperature**

SG of BL @ 60ºF / water @ 60ºF = 145/(145 - ºBé)

- **Solids content inferred from ºBaumé**
	- **useful during boilouts and re-starts**
	- **correlation changes with wood species!**

"Good" Liquor

• Recovery operations is often the culprit for black liquor causing operational problems at evaporators

- **Recovery Boiler Reduction Efficiency**
	- **High is better, greater than 95% should be targeted**
- **Causticizing Efficiency**
	- High is better, 78 to 80% often a good target
- **Fiber Content**
	- **< 40 mg/l**
	- Beware of TSS (total suspended solids)

Kraft Liquor Evaporator

Residual (effective) Alkali (as NaOH)

- **Minimum 2 g/l, ideally 4 to 9 g/l**
- Low -> lignin condensation, fouling
- High -> Corrosion, loss of capacity

Side streams

- **Neutralize both CTO (crude tall oil) and sesquisulfate to a minimum pH of 10**
- **Lower pH causes localized low pH areas -> lignin condensation**
- Return CTO brine after final soap separation

Kraft Liquor Evaporator

Primary task

■ Concentrate weak black liquor (~15% dry solids content) to **firing black liquor (> 65% dry solids content) in a continuous and energy-efficient manner**

• Secondary tasks

- **Produce pure condensate**
- **Process various side-streams**

Evaporation Basics

Heat Transfer

Regardless of type, all kraft black liquor evaporators are governed by

Q = U * A * ∆T

where

Q = Amount of heat transferred (ie. capacity)

U = Heat transfer coefficient

A = Heat transfer area

 ΔT = delta-T = temperature difference

$$
= T_{\text{Saturated steam in}} - T_{\text{Liquor out}}
$$

Multiple Effect Evaporation

- In a single-effect evaporator steam is used only once, resulting in **steam flow rate to the evaporators that would be more than evaporation rate**
- **Economic operation requires multiple-effect operation where evaporated vapor from one effect is used as heating steam in the next effect**
- **Steam Economy is a simple measure of the efficiency of a given evaporator design**

Steam economy can vary from 1.5 to 7

Example: Two-Effect Operation

Multiple Effect Limits

- **Overall ∆T is limited by steam saturation temperature and achievable vacuum**
- **Example from a recent 7-effect system producing 75% product liquor dry solids:**
	- **Tsat 50 psig (4.5 bar) 298°F (148°C)**
	- T_{sat} 26" Hg vac (0.13 bar) **125°F** (52°C)
	- **∆T Available 173°F (96°C)**
- **For modern 7-effect evaporators, roughly 50% of the ∆T available is consumed by Boiling Point Rise (BPR) and pressure losses in the ducting, leaving only an average of 12°F (7°C) ∆T for each effect**

Multiple Effect Limits

- **∆T across each effect further decreases as the number of effects increases**
	- Only one 8-effect black liquor evaporator exists in North America
- **Increasing number of effects from modern "standard" of seven is not considered to be an economically viable alternative to reduce steam consumption**
	- **There are more economical options for reducing evaporator energy consumption**
		- **Vapor compression evaporation, systems integration**

BPR Example fo 6-Effect LTVs

 $\text{Total } \Delta T = T_{\text{stream}} - T_{\text{condensate}} - \Sigma BPR$

 $\mathbf{Ex.} \Delta \mathbf{T} = 298 \text{ }^{\circ}\mathbf{F} - 125 \text{ }^{\circ}\mathbf{F} - 44 \text{ }^{\circ}\mathbf{F} = 129 \text{ }^{\circ}\mathbf{F}$

Evaporator Types

- **Long Tube Vertical (LTV)**
	- **Rising-film type evaporator utilizing mostly tube-type heating surface**
	- **Liquor movement upwards inside tubes**
		- **Movement caused by heating and action of water vapor generated by boiling**
	- **Obsolete by modern standards but still in use in many North American mills**

Evaporator Types

Forced Circulation (FC)

- Forced circulation type evaporator utilizing mostly tube-type heating surface fully **submerged in liquor**
- **Liquor movement caused by circulation pump**
- **Originally used for high solids units**
- High power consumption has reduced its use in modern mills

Falling Film (FF)

- **Utilizing various heating surface types**
- **Liquor falls over the heating surface by gravity**
- **Current standard technology for new evaporators and concentrators**

LTV Evaporator

- **Oldest black liquor evaporator**
- **Many designs are by Paul Kestner in early 1900's**
- **Still a workhorse in North America due to large installated base**
- **Last LTV evaporator set delivered in 1983**
- **No circulation pump - Minimum operating costs**
- **Can be operated with minimum instrumentation**

LTV Evaporator

- **Liquor enters the tubes from the bottom**
- **Liquor film moving upwards is created by vapor formed by boiling liquor at the bottom of the tubes**
- **Liquor film formation requires sufficiently high load (high ∆T)**
	- **Limits LTV use for practical maximum of 6 effects**
	- **Limits LTV turndown capability**

LTV Evaporator Regions

FC Evaporator

- **Large liquor volume is circulated through a submerged heater**
- **Heated liquor flashed in adjacent flash tank**
- **For black liquor most common use as "concentrator" for 50% or above liquor**
- **Circulation pump power consumption became a drawback**

Jean Claude Patel, 2016 Kraft Recovery Course

FC Evaporator

FF Evaporator

- **Original design by Zaremba Company**
	- Patent drawing from 1949 shown but there **were earlier designs**
- **Became established in the Pulp and Paper industry in the 1980's**
	- **First single units already in the 1930's/1940's**

FF Evaporator

- **Nowadays the standard for modern black liquor evaporator sets**
- **Modest liquor circulating pump and distribution system provides even liquor film regardless of the load or operating conditions**

Tubular FF Evaporator

Lamella (Plate) FF Evaporator

- **Heating surface is made from pillow-plate shape heating elements**
- **Steam/vapor condenses on the inside, falling liquor film on the outside**
- **Liquor is circulated with a circulation pump and distributed on top of the heating surface**

Tubel® FF Evaporator

- **Same design concept as plate type evaporators but with tubes**
	- **Liquor on the outside, steam on the inside**
- **Typically multiple bodies where one body can always be put on wash**

Evaporator Type Selection

- **All three types are in common use in the industry**
- **Modern mill requirements:**
	- **Single line** → **High turndown, reliable operation**
	- **Minimum operating costs**
	- High steam economy \rightarrow Maximum number of effects
	- **Low pump electric power consumption**
	- **Optimum condensate quality**
- **These requirements have converged modern new evaporators into a design using falling film technology with 7 or 7 ½ thermal effects and multiple 1st effect ("concentrator") bodies**

Evaporator Operation

- **Primary objective is to have sufficient capacity to meet pulp mill and recovery boiler demands**
- **Once this is met, typical second objective is operating cost minimization**
- **All effects and auxiliaries must perform for maximum capacity to be realized**
- **Liquor side fouling control, mitigation and fouling removal (normally by a boil-out) are part of day-to-day operations for most units**
- **Common other operational issues are discussed later in evaporator troubleshooting**

Challenges for Materials of Construction

- \bullet **Inorganic salts in black liquor increase in corrosivity as temperature and liquor solids increase throughout the evaporators and concentrators**
- **Especial concern is Stress Corrosion Cracking (SCC) of austenitic stainless** steels caused by NaOH and Na₂S at **elevated temperatures**

Materials Selection

Traditional selection until 1990's was mixed construction

- Mixed carbon steel and 304-grade stainless steel for weaker effects, all 304-grade **stainless steel for stronger effects**
- **Many still in operation today**
- **Increase in final dry solids and other changes have changed modern selection to**
	- **All 304-grade (304L) stainless steel for weaker effects**
	- **Duplex stainless steel grades (S32101, S32304, S32205) for concentrators**
		- **To eliminate risk of SCC**