International Conference on Nanotechnology for Renewable Materials

Tunable Pickering Emulsions Based on Cellulose Nanomaterials and Cellulose Derivatives

Francesco D'ACIERNO*, Isabelle CAPRON

INRAE – BIA Unit – NANO Team

TAPPI Nano Conference 2023

13/06/2023

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

> Pickering Emulsions Stabilized by CNCs

- Emulsions are widely used to easily encapsulate and carry various liquids.
- CNCs can be used to stabilize oil-in-water (O/W) Pickering emulsions.
- CNCs irreversibly adsorb on the surface of oil droplets, forming a protecting shell that can resist over time to mechanical and chemical stress.

mg CNC/mL oil (m_p)

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

INRA

Surface Adsorption of Tannic Acid (IA) and Alkyl (Ether) Cellulose Derivatives (ICDS)

- **Commercially** important bio-compounds, **not toxic**.
- **Tannic acid** (**TA**): paint, food additive, burn medication.
- Methyl cellulose (MC): thickener, food emulsifier, binder in medications.
- Ethyl cellulose (EC): ingredient in adhesives, food additive, microencapsulant.
- Literature on CNC@MC and CNC@EC: emulsions, foams and composites (high ACD fraction, >90 wt%).

TAPPI Nano Conference 2023

INRA

13/06/2023 – Francesco D'ACIERNO

> Objectives

- Prepare sustainable CNCs coated with TA or ACDs (lower TA or ACD fraction) to control their emulsification properties.
- Prepare novel Pickering emulsions with increasing stability and various droplet sizes and morphology to tailor properties and performance to specific applications (controlled release, mouthfeel, bioavailability, etc).

> Preparation of CNC@TA Emulsions

> CNC vs CNC@TA Emulsions

С

СТ

- CNC and CT: shelf stability over time, fair resistance to mechanical stress.
- CT emulsion volume is **lower**, and **droplet** size is larger.
 - 1. Thick TA coating, interfacial large gaps.
 - Altered 2 interfacial properties.

INRA@

VS.

Camera

Granulometry

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO p. 6

СТ

С

СТ

> CNC vs CNC@TA Emulsions

- CNC and CNC@TA: monomodal distribution, **no visible sign of aggregation**.
- CNC@TA droplet: presence of **interfacial gaps**.

> Preparation of CNC@MC Emulsions

> CNC vs CNC@MC Emulsions

- Camera Granulometry
- CM: excellent shelf stability and resistance upon centrifugation, better than CNC → ↑ particle coverage, steric hindrance, gel network formation, rheological properties.
- CM40 volume is significantly larger, and droplet size upon MC addition is always bigger than CNC → reduced adsorption at oil interface with ↑ hydrophilic MC.

NKAC

> CNC vs CNC@MC Emulsions

- CM and MC: no apparent sign of aggregation.
- CM droplet: quasi spherical, rough surface, partially aggregated \rightarrow MC interaction.

> Preparation of CNC@EC Emulsions

Various EC weight fractions → <mark>5%, 20%, 40%</mark> (w/w)

Colloidally stable

5 g/L suspensions

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

INRA

> CNC vs CNC@EC Emulsions

- CE: **poor shelf stability** and resistance upon centrifugation → hydrophobic EC.
- CE40 **volume** is significantly **larger**, while CE5 and CE20 are **lower**. **Droplet size** upon large EC additions is smaller → higher viscosity impedes droplet movement and coalescence.

> CNC vs CNC@EC Emulsions

- CNC@EC: no visible sign of aggregation.
- CNC@EC droplet: quasi spherical, smoother surface than CM, coalesced in CE5.

> Conclusions

- Sustainable colloidally stable suspensions can be made by mixing CNC suspensions and tannic acid (TA) or alkyl cellulose derivative (ACD) solutions.
- More stable oil-in-water **Pickering emulsions** can be made from modified CNCs, especially with **methyl cellulose**.
- Droplet size can vary between a minimum of 2 μm to a maximum of 55 μm.
- The **interfacial behavior** and **weight fraction** of the additive determine several emulsion properties.

	Stability	Volume	Droplet size	Distribution
С	-	-	-	Mono
СТ	=	Ļ	ſ	Mono
CM5	1	↓	1	Mono
CM20	Î	Ļ	1	Mono
CM40	Î	ſ	1	Mono
М	Ļ	Ļ	1	Mono
CE5	↓	Ļ	1	Mono
CE20	↓	↓	↓	Mono
CE40	Ļ	1	↓	Mono

International Conference on Nanotechnology for Renewable Materials

Thank you.

INRAE – BIA Unit – NANO Team

TAPPI Nano Conference 2023

13/06/2023

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

International Conference on Nanotechnology for Renewable Materials

Appendix

Francesco D'ACIERNO*, Isabelle CAPRON

INRAE – BIA Unit – NANO Team

TAPPI Nano Conference 2023

13/06/2023

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

> Advantages and Drawbacks of CNC Hydrophilicity

x Ice formation **X** Biofouling

χ Incompatibility with common organic solvents and polymer matrices

Cu (II) adsorption ---·CNF I ····· CNC II 30 20 10 Cellulose 1000 2000 3000 4000 5000 Time[min] Sci. Rep. 2017, 7, 14207. Nanomaterials 2017, 7, 57. Nanocellulose dispersion

Phil. Trans. Royal Soc. A 2012, 370, 2381-2417.

117

113

CHC TOCHE D.CHC

5850 times

14

CAN

unit: mg/g

0.02

Cellulose-fundamental aspects and current trends, 193-228 (2015)

Cellulose 2016, 3, 1825-1846.

INRA

Surface Modifications of CNCs

	Electrostatic	Covalent grafting	Surface adsorption		
		the state of the s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
One-pot reaction	\checkmark	X	\checkmark		
Chemical stability	\checkmark	\checkmark	\checkmark		
Compatible solvents	\checkmark	X	\checkmark		
Sustainable reagents	\checkmark	X	\checkmark		
Controlled polymerization	X	\checkmark	X		
High yield	\checkmark	X	\checkmark		
Wide range of additives	X	\checkmark	\checkmark		
Change in wettability	\checkmark	\checkmark	\checkmark		

INRAe

> Manipulating Wettability through Surface Adsorption

Hydrophilization

Plant polyphenols: <u>tannic acid</u> (TA) \rightarrow 19°

ACS Sustain. Chem. Eng. 2017, 5, 5018-5026.

Hydrophobization

Surfactants: octadecylamine \rightarrow 117°

3.0-ODA-TOCNF

Carbohydr. Polym. 2021, 256, 117536.

Superhydrophobization

Other additives: nanosilica and methyltrimethylsilane \rightarrow 159°

Carbohydr. Res. 2022, 511, 108488.

> Current Issues & Possible Solutions

Issue	Possible solution
Some adsorbates are nonsustainable	Sustainable adsorbates can be used
Achieved wettability ranges are limited	Adsorbate substituent and concentration can be varied
Most cases involve CNC hydrophobization	Hydrophilizing adsorbate can be used to attain superhydrophilicity
Resource availability can be scarce	Cellulose derivatives can be used

> Preparation of CNC@TA Suspensions

INRAØ

STEM Morphology of CNC vs CNC@TA Nanoparticles

CNC width increase

> Apparent Diameter of CNC(@TA)@MC Suspensions

INRAØ

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO DLS

STEM Morphology of CNC vs CNC@MC Nanoparticles

INRA@

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO Low [MC] regime

CNC width increase: MC coiling on surface

STEM Morphology of CNC vs CNC@MC Nanoparticles

High [MC] regime

CNCs frozen in a matrix

INRAO

> Simplified Model of CNC-ACD Interactions

Low [ACD] regime: coiling and/or coating

High [ACD] regime: composite

Hydrophobic effect

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

Critical point → CNC:ACD 2:1

> Wettability of CNC@ACD Solid Surface

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO **Contact Angle**

> Water in Air Contact Angle Pictures

CNC@MC (2.7% w/w)

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

INRA

> Water in Hexane Contact Angle Pictures

Benoit Duchemin

Some sites are occupied by alkane molecules

> Conclusions

- Sustainable colloidally stable suspensions can be made by mixing CNC and CNC@TA suspensions and alkyl cellulose derivative (ACD) solutions.
- Depending on [ACD], uniform coating (low ACD weight) or heterogeneous composite (high ACD weight) is formed.
- The **critical** transition is around CNC:ACD **2:1** ([ACD]=**33% (w/w)**).
- Wettability ranges from 11° to 68°.
- Wettability can be finely **tuned** by **adjusting [ACD]**.
- **Superhydrophilicity** can be attained, not hydrophobicity yet.

> Acknowledgments

Isabelle Capron

Bruno Novales

AGENCE NATIONALE DE LA RECHERCHE ANR-20-CE43-0011 NRA(science for people, life & earth

> Apparent Diameter of CNC(@TA)@EC Suspensions

INRAØ

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO DLS

> Molecular Analysis of Cellulose vs Propyl Cellulose

> Ethyl Cellulose (EC) Solubility

Solubility Parameter Ranges for Ethylcellulose

		Solubility parameter range MPa ^{1/2}						
DS	Ethoxyl content %w/w	Poorly	Moderately hydrogen-bonded solvents	Strongly				
2.28-2.38	45.5-46.8	0	17.4-22.1	19.4-23.3				
2.42-2.53	47.5-49.0	16.6-22.7	15.1-22.1	19.4-29.7				
>2.53	> 50.0	17.4-19.4	16.0-20.1	19.4-23.3				

Rekhi, G. S., & Jambhekar, S. S. (1995). Ethylcellulose-a polymer review. *Drug development and industrial pharmacy*, *21*(1), 61-77.

- EC is soluble in esters, aromatic hydrocarbons, alcohols, ketones, and chlorinated solvents.
- The solubility depends on the **degree of substitution** (DS).

INRA@

OCH₂CH₃

> EC Viscosity in Various Solvents

Viscosity and Film Properties of Ethylcellulose

(15 g Resin in 100 cc Solvent)

	Solution Pro	<u>C</u> <u>Film P</u>	Film Properties		
Solvent	Viscosity	Specific	Yield Pt.	Elongation	
	cps	Gravity	Kg/cm ²	%	
n-Butanol	1900	0.848	425	6	
Butyl acetate 90%	590	0.901	430	7	
Ethanol, Formula 30	560	0.850	_1	1	
Ethyl Acetate, 99%	360	0.924	440	9	
Ethylene dichloride	470	1.238	420	5	
Methyl ethyl ketone	320	0.845	428 ²	7 ²	
Toluene	1930	0.890	440	12	
80-20 Toluene-ethanol	260	0.887	440	7	

¹ Too brittle to test properly

² Films show "orange peel"

Rekhi, G. S., & Jambhekar, S. S. (1995). Ethylcellulose-a polymer review. *Drug development and industrial pharmacy*, *21*(1), 61-77.

INRA@

OCH₂CH

- Ethanol and methanol yield less viscous EC solutions and they are easier to work with
- However, the higher the DS of EC, the lower the solubility in ethanol (toluene fraction required to make them less viscous).

> Minimum Solution Viscosity of EC Solutions

Solvent Compositions for Minimum Solution Viscosity for Ethylcellulose

Solvent Mixture	Solvent Composition
Aromatic/ethanol	20% ethanol
Aromatic/ester	No change by varying ester
Esters/ethanol	20% ethanol
Ketones/ethanol	20% ethanol
Aromatic naphthas/ethanol	30% ethanol
Aliphatic naphthas/ethanol	30 % ethanol

Rekhi, G. S., & Jambhekar, S. S. (1995). Ethylcellulose-a polymer review. *Drug development and industrial pharmacy*, *21*(1), 61-77.

- Aliphatic esters and ketones → low viscosity due to low M_w
- In these cases, adding a bit of alcohol will make the solutions less viscous.

INRAC

Solubility phase diagram of ethylcellulose (EC) in H₂O/EtOH

p. 41

Solubility enhancement of ethylcellulose (EC) in H₂O/EtOH

INRAØ TAPPI Nano Conference 2023

13/06/2023 – Francesco D'ACIERNO

Dispersibility phase diagram of cellulose nanocrystals (CNCs) in H₂O/EtOH

13/06/2023 – Francesco D'ACIERNO

> Dispersibility enhancement of cellulose nanocrystals (CNCs) in H₂O/EtOH

Approach #2 (subsequent addition of cosolvent) is effective to enhance solubility and dispersibility

> CNC(@TA)@EC Suspensions before EtOH evaporation

INRAØ

> Turbidity of CNC(@TA)@MC Suspensions

 $NTU = 0.191 + 926.1942 * A_{500}$

TAPPI Nano Conference 2023

13/06/2023 – Francesco D'ACIERNO

INRA@

UV-vis

> Turbidity of CNC(@TA)@EC Suspensions

INRAØ

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO **UV-vis**

> Example of Microscopic Imaging of CNC Adsorption in Literature

ACS Sustain. Chem. Eng. 2017, 5, 5018–5026.

> Molecular Analysis of CNC(@TA)@MC Aerogels

INRA@

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

> Molecular Analysis of CNC(@TA)@MC Aerogels

TAPPI Nano Conference 2023

13/06/2023 – Francesco D'ACIERNO

> Molecular Analysis of CNC(@TA)@EC Aerogels

INRAØ

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

> Molecular Analysis of CNC(@TA)@EC Aerogels

INRAØ

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

> Water droplet dynamics on CNC(@TA)@MC solid interface

> Water droplet dynamics on CNC(@TA)@EC solid interface

> Hexadecane Contact Angle Pictures

Superlipophilic

Sedimentation of CNC(@TA)@ACD Suspensions

AcO evaporation

on hotplate (slow)

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO

INRA

Sedimentation of CNC@EC and CNC@TA@EC Suspensions (64.3 wt%)

Sedimentation of CNC@EC and CNC@TA@EC suspensions

INRAØ

OCH₂CH₃

> CNC(@TA)@EC Sedimentation Depending on EC mass

t = 10080 min

> Redispersibility of CNC(@TA)@EC aerogels

+ Vortex mixing (10 sec)

INRA@

> Redispersibility of CNC(@TA)@EC Aerogels (1 mg/1 mL)

CNC@TA@EC (64.3) in water CNC@TA@EC (64.3) in hexadecane

EC in hexadecane

pieces of

aerogel

All redispersible in water and not hexadecane **APART FROM** <u>**CNC@TA@EC**</u> (64.3% <u>w/w</u>) which is not redispersible in water and form an **organogel** in hexadecane

INRAØ

> Redispersibility of CNC(@TA)@EC Aerogels (1 mg/1 mL)

[EC]		Water	Не	kadecane	Eth	nanol	Toluene		Acetone	
0.0	CNC	CNC@TA	CNC	CNC@TA	CNC	CNC@TA	CNC	CNC @TA	CNC	CNC @TA
6.5										
16.7										
37.5										
64.3										
100.0										
Green = redispersible; Blue = swelling/gel; Red = not redispersible; Grey = N/A.										

INRA@

OCH₂CH₃

Redispersibility of Sedimented CNC(@TA)@EC Aerogels (1 mg/1 mL)

[EC]	1	Water	Нех	adecane	Ethanol		Toluene		Acetone	
0.0	CNC	CNC@TA	CNC	CNC@TA	CNC	CNC@TA	CNC	CNC @TA	CNC	CNC @TA
6.5										
16.7										
37.5										
64.3										
100.0										
Green = redispersible; Blue = swelling/gel; Red = not										

redispersible; Grey = N/A.

INRAØ

> Thermal Stability of CNC(@TA)@EC Aerogels

INRAØ

OCH₂CH₃

TAPPI Nano Conference 2023 13/06/2023 – Francesco D'ACIERNO TGA

> Model of CNC@TA@EC Nanoparticles

> Properties of Propyl Cellulose

Carbohydrate Polymers Volume 94, Issue 1, 15 April 2013, Pages 120-123

Short communication

Microwave-assisted synthesis of alkyl cellulose in a queous medium \bigstar

Atanu Biswas ª 🐣 🖾, S. Kim ª, G.W. Selling ª, H.N. Cheng ^b 🐣 🖾

Probable DS of our PC = 0.4 Unknown molecular weight

INRAØ