International Conference on Nanotechnology for Renewable Materials

Lignocellulosic Bioplastic as a Promising

Active Food Packaging

Dr Nasim Amiralian

Bio-inspired Materials Group

Research interest

Nano-engineered materials

- Guided formation of nanoparticles
- Polymer brushes
- Antimicrobial materials
- Anti-corrosion coatings

Nanocomposites

- Reinforcing polymers
- Reinforcing paper
- Carbon

Ag waste value-added products

- Biodegradable polymer
- Sorbent

Project

Energy storage

Packaging

Biocomposites for EV

Coating

Air filter

Medical textiles

Packaging waste

Biomass-based packaging

Challenges of lignocellulosic based packaging

Lignocellulosic biomass treatment

Green Chemistry: "Safer Solvents and Auxiliaries"

Acid treatment

- Dissolution of lignin
- Increase cellulose content and surface area

Alkali treatment

- Break the bonding between lignin and carbohydrate
- Increase the inner surface area
- Easy cellulose accessibility

Deep eutectic solvents treatment

- Larger affinity toward lignin dissolution compared to cellulose
- Effective removal of hemicellulose
- Swelling and deconstruction of cellulose

Lignin processing

Sugarcane trash treatment with DES

Lignin/hemicellulose dissolution Destruction and fibrillation of cellulose Lignin and cellulose nanofiber dispersion

Lignocellulosic sheet

Morphology

Characterisation

Characterisation

Significant factor

Initial contact: entrap air
Overtime: hydrophobic nature

Nanosheet properties

Antioxidant properties

2,2'-azino-bis(3-ethylbenzothiazoline-6sulphonic acid)

ABTS* Green colour

ABTS Colourless

Long term capacity analysis

From left; CNF, LCS1, LCS2, LCS3, LCS4

Summary

- Agricultural waste is a valuable source of material for the production of sustainable and biodegradable packaging
- DES could be an environmentally friendly option to treat biomass for packaging
- There is an optimised condition to synergistically achieve all desirable properties for packaging

Thank you

Dr Nasim Amiralian | Group Leader Australian Institute for Bioengineering and Nanotechnology n.amiralian@uq.edu.au 07 3443 1296

@AmiralianLab

https://researchers.uq.edu.au/researcher/11106

