# CNC from an oxalic acid process

# Beatrice Swensson KTH, Sweden











Dissolving pulp



Cellulose oxalate powder





#### Cellulose oxalate powder

#### Extrusion with thermoplastics in twin-screw extruder



| Sample            | Fiber<br>content | Tensile<br>modulus<br>(MPa) | Tensile<br>strength<br>(MPa) | Elongation at break |
|-------------------|------------------|-----------------------------|------------------------------|---------------------|
| Reference only PP | 0%               | 1450                        | 31                           | 300%                |
| PP 2%<br>MAPP     | 20%              | 2020                        | 32                           | 11%                 |
| PP 3%<br>MAPP     | 30%              | 2500                        | 33                           | 8%                  |
| PP 4%<br>MAPP     | 40%              | 3000                        | 37                           | 6%                  |



#### Cellulose oxalate powder

#### Extrusion with thermoplastics in twin-screw extruder



Protonated 175 °C Na/Li/K 205 °C









Total yield: 54%







# Characterization of product after ultrasonication

- Size: Two possible fractions, micro and nano
- Stable colloidal suspension after ultrasonication and centrifugation
- Rod-like OA-CNC
  - Width 10-20 nm, Length 240 490 nm
  - Z-ave 200-300 nm
- Charge 0.20 mmol/g SS-ISO 21400
  - Intermediate product and nanocellulose
  - Acetone Soxhlet does not remove all acid





## Identifying the sodium form?







#### **Drying and redispersing the CNC**

#### Previous research on CNC

NaCl: good & bad (Beck et al. 2012, Missoum et al. 2012)

Remaining water content (Beck et al. 2012)

Additives: CMC, glycerol, lignin...

Sodium form (Beck et al. 2012)

"...a change in pH value equals a change in salt concentration, following cs=10-pH so that a pH of 2 or 12 corresponds to 10 mm salt"

(Benselfelt et al. 2023)

Strategy: low ionic strength, no NaCl, sodium form but low NaOH, not completely dry



#### Drying and redispersing the CNC: Method



Image created with Biorender



# Drying and redispersing the CNC: ambient drying

#### Results so far:



60-80% redispersable without further treatment if dried to 85% DC after ultrasonication



Dialysis



Dialysis on OA-CNC + NaOH



Urea



**CMC** 



| Sample | Conduct. | рН  | Redisp.  |
|--------|----------|-----|----------|
|        | [µS/cm]  |     |          |
| 1      | 335      | 8.4 | Yes, 80% |
| 2      | 53       | 4.5 | No       |
| 3      | 120      | 5.8 | Yes, 40% |
| 4      | 88       | 6.3 | Yes, 20% |
| 5      | 148      | 7.7 | Yes, 15% |



#### Acknowledgements

- FineCell, start-up company
- FORMAS Swedish funding agency
- Anastasia Riazanova for the SEM images
- Professor Monica Ek, my supervisor

Questions?