PRODUCTION OF pH-STABLE LIGNIN NANOPARTICLES IN HIGH YIELD VIA AN INNOVATIVE GREEN APPROACH AND THEIR APPLICATION IN THE DYING OF TEXTILES

Valdeir Arantes, PhD

Laboratory of Applied Bionanotechnology
Department of Biotechnology | Lorena School Of Engineering | University of São Paulo

⊠ Email: valdeir.arantes@usp.br

Web: www.sites.usp.br/nanobiotech

CONVERSION OF LIGNIN INTO LNPs

PROPERTIES ARE DRASTICALLY IMPROVED

SOLUBILITY

UV LIGHT ABSORPTION

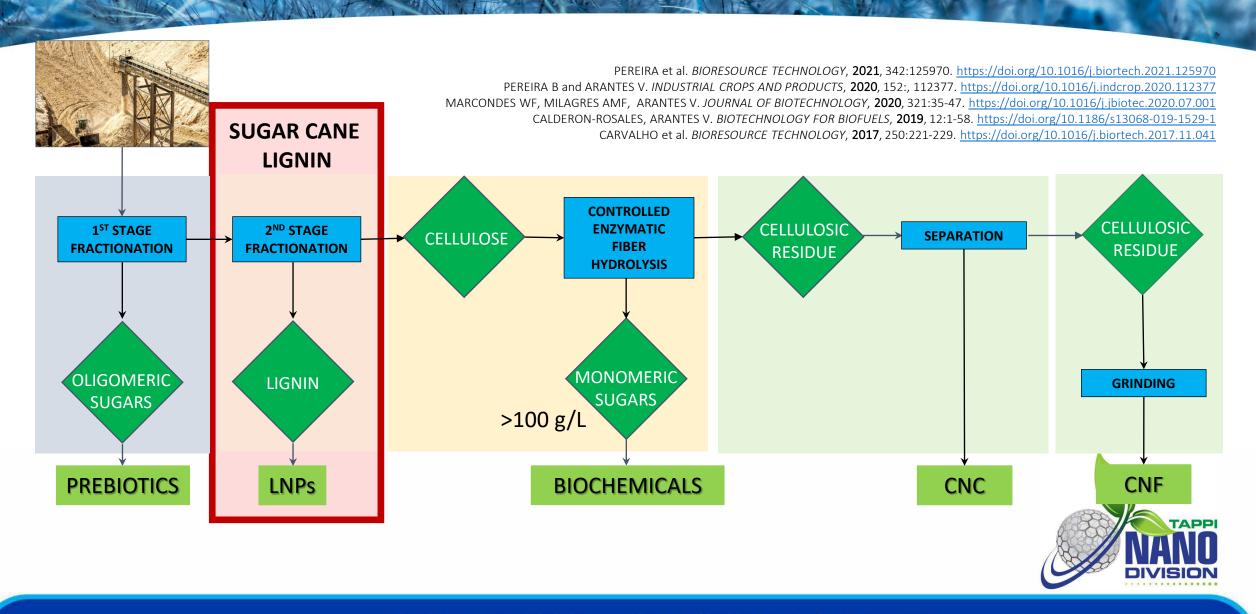
ANTIOXIDANT ACTIVITY

HOMOGENOUS DISPERSION IN NANOCOMPOSITES

THERMAL STABILITY OF NANOCOMPOSITES

MECHANICAL PERFORMANCE OF NANOCOMPOSITES

REDUCED WATER SENSITIVITY OF NANOCOMPOSITES


BARRIER TO BLOCK THE PERMEABILITY OF GAS IN FILMS

HIGHLY DEPENDENT ON THE PRODUCTION METHOD!

THERMAL STABILITY: J Yang et al., 2015 Nair et al. 2014

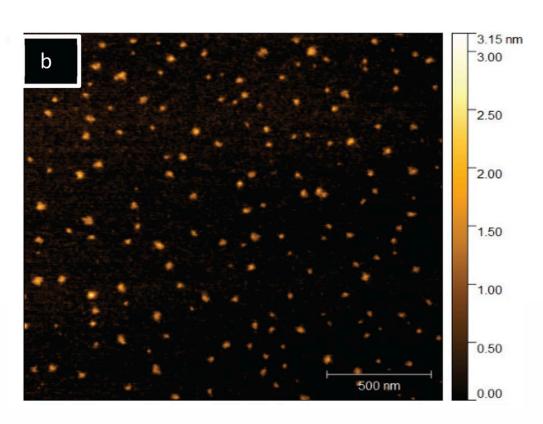
PRODUCTION OF LNPs BY MECHANICAL REFINING PROCESS SIMPLE & EFFICIENT

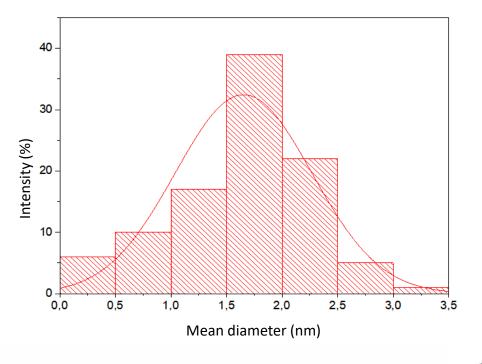
PRODUCTION OF LNPs FROM SCB-LIGNIN

PROCESS SIMPLE & EFFICIENT

Table 1 Average particle size of sugarcane bagasse lignin (SCB-L) in an aqueous suspension (1% w/w) before (control) and after a different number of processing cycles in the disc ultra-refiner Supermasscolloider

Cycle	Ps ₁₀ ^a (μm)	Ps ₅₀ ^b (μm)	Ps ₉₀ ^c (μm)	Surface area (m ² kg ⁻¹)	Zeta potential (mV)	Time (min)	Energy consumption (kW h kg ⁻¹)
Control	3.34	4.19	→8.28	592	-27.5	0	0
1	0.012	0.018	0.035	16 500	-31.3	8.5	6
2	0.011	0.017	0.033	20 770	-32.1	17.1	11
3	0.011	0.017	0.033	22 270	-30.7	25.5	17
5	0.011	0.016	0.031	29 070	-30.4	42	28
1 0	0.011	0.016	0. 031	28 900	-35.0	81.4	56


 $[^]a$ PS₁₀: 10% of the particles have size equal or below the indicated value. b PS₅₀ 50% of the particles have size equal or below the indicated value. c PS₉₀ 90% of the particles have size equal or below the indicated value.


~100 yield

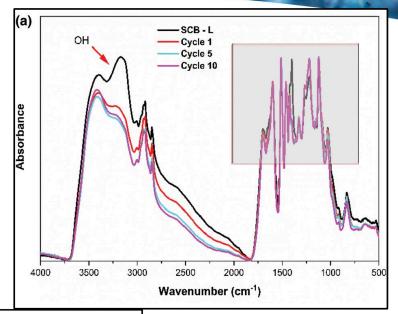
LNPs: MORPHOLOGY

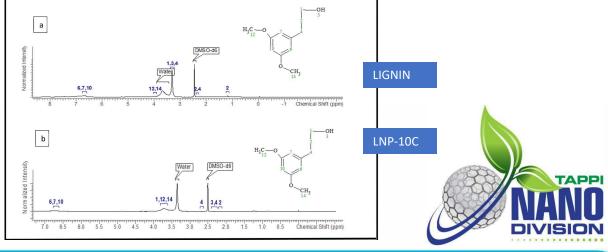
SPHERICAL AND NANOMETRIC (AFM)

LNP: HIGHLY UNIFORM < 3,5 nm

LIGNIN: 1-100 µm

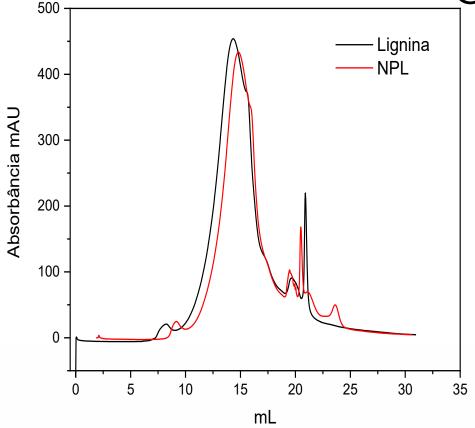
CHACTERIZATION OF SCB-LNPs FT-IR & 1H NMR


LIGNIN CHEMICAL BONDS (i.e, β-O-4) WERE DETECTED NO SIGNIFICANT CHANGES WERE OBSERVED


INTENSITIES OF THE DIFFERENT FT-IR BANDS CHANGED

- → HYDROXYL (3600–3200 and 1380 cm⁻¹)
- ↑ C-O-C IN G AND S groups (1329–1130 cm⁻¹)
- ↑ AROMATIC SKELETON (1599 and 1513 cm⁻¹)

FT-IR + 1H NMR

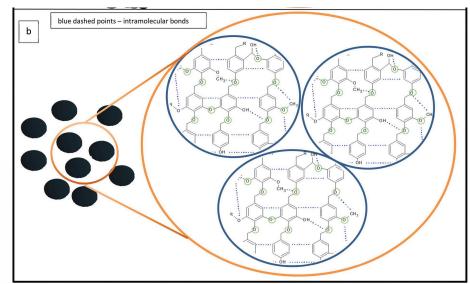

NO EVIDENCE OF CHEMICAL CHANGES
INTRINSIC PROPERTIES LIKELY MAINTAINED

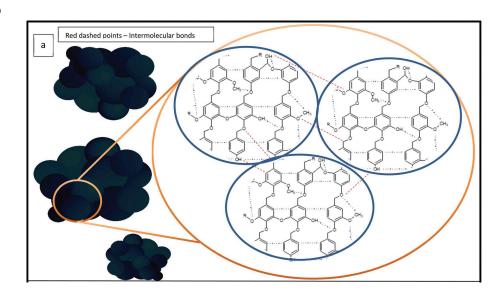
CHACTERIZATION OF SCB-LNPs

SEC

MW DISTRIBUTION OF THE LIGNIN MACROMOLECULES
BEFORE AND AFTER PROCESSING WERE VERY SIMILAR
(ONLY CHANGED SLIGHTLY)

NO EVIDENCE OF LIGNIN MOLECULES FRAGMENTATION

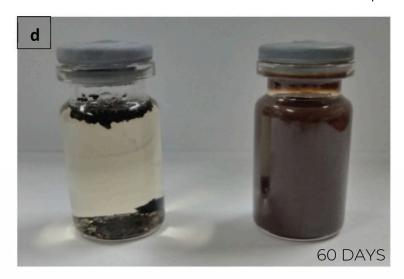



CHACTERIZATION OF SCB-LNPs

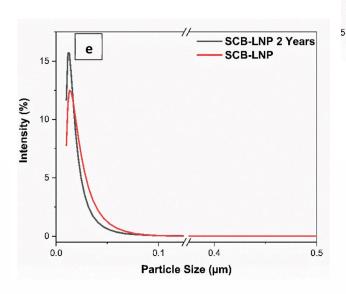
BREAKING OF WEAK INTERACTIONS (i.e., HYDROGEN BONDS & van der WAALS)

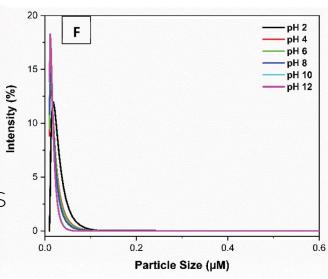
REDUCTION IN SIZE OF LIGNIN CLUSTERS

INTRISIC PROPERTIES LIKELY MAINTAINED

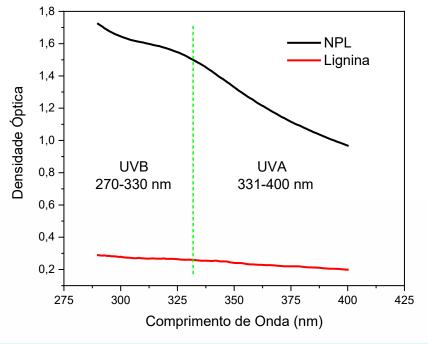


PROPERTIES OF SCB-LNPs - STABILITY


HIGH SUSPENSION STABILITY INCREASED ZETA POTENTIAL


LONG-TERM STABILITY IN AQUEOUS MEDIUM (2 YEARS)
NO CHEMICAL CHANGED TO THE STRUCTURE (CONFIRMED BY ¹³C NMR)

REMAINED STABLE OVER A BROAD pH RANGE, EVEN UNDER ACIDIC CONDITIONS

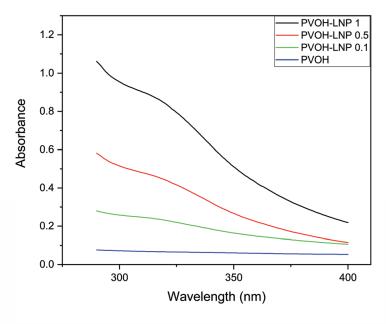


PROPERTIES OF SCB-LNPs

UV ABSORPTION

HIGHER ABSORPTION TOWARD UV-A (320-400 nm) and UV-B (290-320 nm)

INCREASE IN ~900%

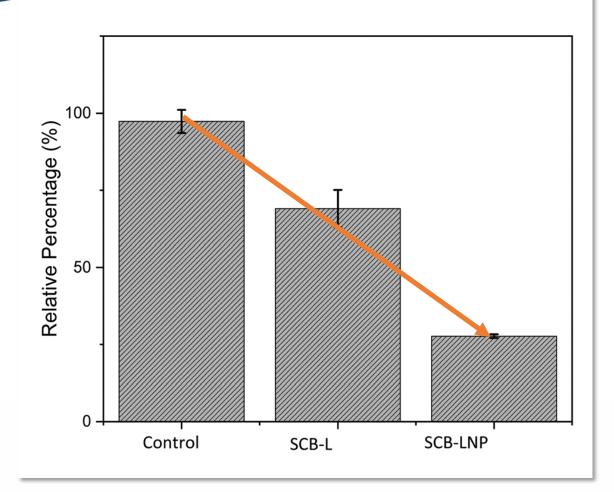


PROPERTIES OF SCB-LNPs - NANOCOMPOSITES

HIGH HOMOGENEITY OF THE PVOH-LNPs COMPOSITE FILMS

UV-SHIFI DING OF PVOH-I NP NANOCOMPOSITE

UP TO 10X MORE ADSORION WITH I NPs

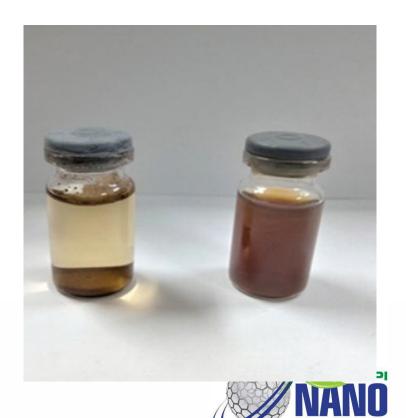


Marotti B & Arantes V. *Green Chemistry*, 2022, 24:1238–1258

PROPERTIES OF SCB-LNPs ANTIMICROBIAL ACTIVITY

GRAM-NEGATIVE E. coli K12711 (OPPORTUNISTIC PATHOGEN)

ANTIBACTERIAL ACTIVITY WAS DRASTICALLY ENHANCED



PRODUCTION OF LNPs FROM KRAFT-LIGNIN

PROCESS: FEEDSTOCK AGNOSTIC

PRODUCTION OF LNPs FROM KRAFT-LIGNIN

PROCESS: FEEDSTOCK AGNOSTIC

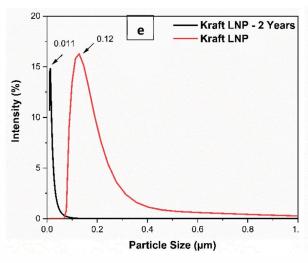
Table 5 Average particle size, surface area, processing time, and energy consumption of Kraft pulp lignin in an aqueous suspension (1% w/w) during processing in the disc ultra-refiner Supermasscolloider for a different number of cycles. 1% (w/w) suspension of Kraft pulp lignin before processing was used as the control

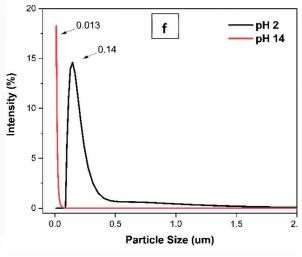
Cycle	Ps ₁₀ ^a (μm)	Ps ₅₀ ^b (μm)	Ps ₉₀ ^c (μm)	Surface area (m² kg ⁻¹)	Time (min)	Energy consumption (kW h kg ⁻¹)
Control	1.35	1.80	→ 5.70	182.7	0	0
1	0.360	0.811	→ 1.98	2152	5	4
2	0.242	0.356	1.35	2690	10.2	8
3	0.192	0.274	0.938	3528	15.21	12
5	0.154	0.221	0.526	4342	32.6	19
→ 10	0.102	0.152	→ 0.287	7912	55.2	36

^a PS₁₀: 10% of the particles have size equal or below the indicated value. ^b PS₅₀ 50% of the particles have size equal or below the indicated value.

^c PS₉₀ 90% of the particles have size equal or below the indicated value.

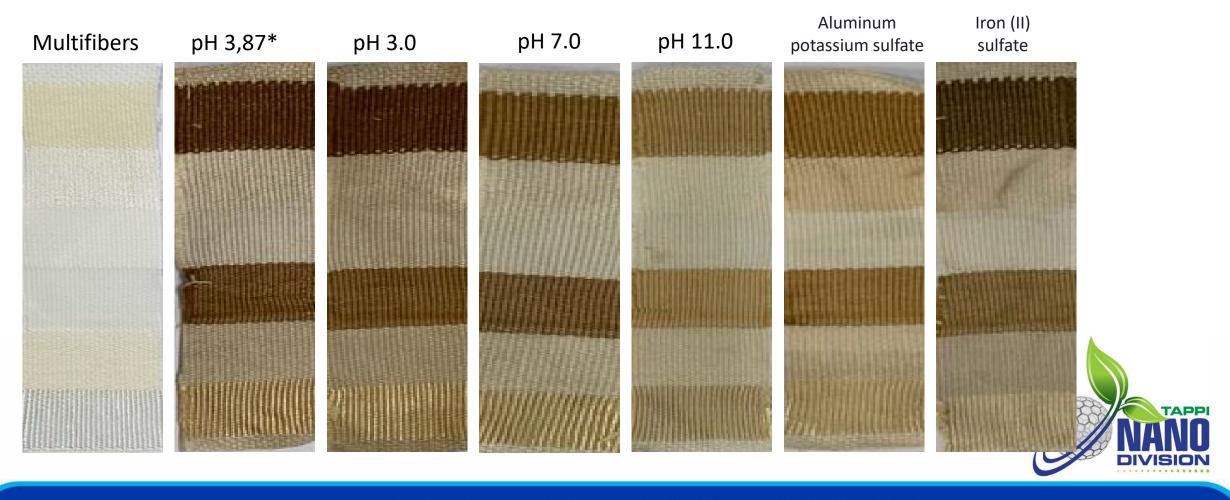
PROPERTIES OF KRAFT-LNPs - STABILITY


HIGH SUSPENSION STABILITY (SOLUBITY)


INCREASED ZETA POTENTIAL

LONG-TERM STABILITY IN AQUEOUS MEDIUM (2 YEARS)
NO CHEMICAL CHANGED TO THE STRUCTURE (CONFIRMED BY ¹³C NMR)

REMAINED STABLE OVER A BROAD pH RANGE, EVEN UNDER ACIDIC CONDITIONS



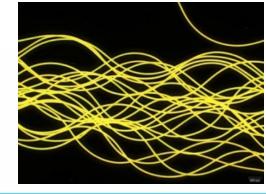
Marotti B & Arantes V. *Green Chemistry*, 2022, 24:1238–1258

TEXTILES COATED WITH LNPs

TEXTILES COATED WITH LNPs

TEXTILES COATED WITH LNPs

Polyamide BF


Polyamide UFBW

Polyamide LNP-75-3C BF

Polyamide LNP-75-3C UFBW

Polyamide LNP-185-5C BF

Polyamide LNP-185_5C UFBW

PROPERTIES OF TEXTILE FIBERS COATED WITH LNPs

Before and after "washing"

ANTIMICROBIAL FABRIC TEST

AATCC 100-2004

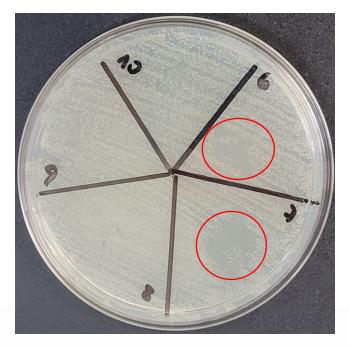
COLOUR FASTNESS TO DOMESTIC AND COMMERCIAL LAUNDERING

ISO 105-C06:2010 – Textiles – Tests for colour fastness – Part C06: Colour fastness to domestic and commercial laundering.

COLOUR FASTNESS TO PERSPIRATION

ISO 105-E04:2013 – Textiles – Tests for colour fastness – Part E04: Colour fastness to perspiration

TENSILE PROPERTIES


ASTM D3822 (2007)

ULTRAVIOLET PROTECTION FACTOR

Sun Protective Clothing – Evaluation and Classification – AS/NZS 4399-2017 Clothing - Ultraviolet Protection Factor - Requirements and test methods – ABNT NBR 16695:2018

ANTIMICROBIAL ACTIVITY IN TEXTILES COATED WITH LNPs

Staphylococcus aureus

UPF OF THE TEXTILE FIBERS COATED WITH LNPs

TEXTILES	BEFORE W	/ASHING	AFTER WASHING ¹		
	UPF ^{2,3}	UV PROTECTION CATEGORY ^{1,2}	UPF ^{2,3}	UV PROTECTION CATEGORY ^{1,2}	
COTTON	-	-	-	-	
COTTON-LNPs	25 – 39	VERY GOOD	25 – 39	VERY GOOD	

¹Textiles – Tests for colour fastness – Part C06: Colour fastness to domestic and comercial laundering – ISO 105-C06:2010

²Sun Protective Clothing-evaluation and Classification – AS/NZS 4399-2017

³Clothing - Ultraviolet Protection Factor - Requirements and test methods - ABNT NBR 16695:2018

TAKE-HOME MESSAGES

DISC ULTRA-REFINING AS GREEN TECHNOLOGY

- PRODUCTION OF LNPs IN HIGH YIELD
- FEEDSTOCK AGNOSTIC, DOES NOT ADD HETEROGENEITY,
- HIGH UNIFORMITY, HIGH SOLUBILITY, HIGHLY pH-STABLE, REDISPERSIBILITY

APPLICATION OF LIGNIN NANOPARTICLES

NANOCOMPOSITES

TEXTILE FABRICS

- HIGH HOMOGENEITY COATING
- ANTIMICROBIAL ACTIVITY
- INCREASED UV PROTECTION (UPF)

