

Synergistic Reinforcement of Polyamide 6 Using Cellulose Nanocrystals and Wood Fibers

Adel Jalaee, Johan Foster

Bioproduct Institute in Chemical and Biological Engineering at UBC

Key Drivers for Polymer Composite Usage

High specific strength and modulus (2-4GPa)

Fuel-saving (30%)

Recyclability

Design flexibility

Corrosion resistance

Matrix

Polyamide 6 (PA6)

$$T_m=220$$
°C

U.S Polyamide market revenue, by product, 2014-2025 (USD Million)

Bio-based Fillers

- Biodegradable
- > Lightweight
- Cost-effective and accessible
- > Sustainable

Cellulose nanomaterials (CNMs)

Saw dust

Pulp fibers (PFs)

μm

mm

Hypothesis

- 1- Employing premixing planetary ball milling to reduce the degradation of cellulose fibers prior to polymer processing.
- 2- Micronizing the cellulose fibers improves thermal stability and dispersion quality.

Methodology

Effect of Premixing on Thermal Stability of Composite

Sample	Onset thermal degradation(°C)
PA6	387
PA6-5%pulp fiber (premixed)	370
PA6-5%pulp fiber (HM)	290
Pulp fiber	160

Effective Parameters in Planetary Ball Milling Process

- > Milling temperature
- ➤ Ball to powder weight ratio
- ➤ Diameter of ball milling
- ➤ Milling time

PA6- 5wt%Pulp fiber

Sample name	Milling time (min)
PBM3	3
PBM15	15
PBM30	30
PBM60	60

Thermomechanical Analysis

Neat pulp fibers before ball mill

Aspect ratio decrease from 15 to 12

PBM15

PBM30

Composite of PA6 with Different Concentrations of Pulp Fibers

According to the optimization study on the milling time, <u>30 min</u> is chosen as a premixing time.

Sample name	PA6 (wt%)	Pulp fibers (wt%)	
Neat PA6	100	0	
PA6-5PF	95	5	
PA6-10PF	90	10	
PA6-20PF	80	20	
PA6-30PF	70	30	
PA6-40PF	It was not possible to make a film due to phase separation		

Morphology

Sample of PA6 reinforced with 30wt% PF after 30 min premixing

- Consistent distribution of pulp fibers
- > PF embedded in polymer particles
- Chunky formed of fibers changed to spread-like form

DSC			
Sample name	Tm(°C)	Tc(°C)	%Xc
Neat PA6	221	190	26
PA6-5PF	221	189	27
PA6-10PF	222	188	28
PA6-20PF	223	187	31
PA6-30PF	222	187	33

- > By incorporation of PFs, Onset degradation temperature decrease.
- > Composite decomposition is the function of the amount of PFs.
- ➤ PFs can act as effective nucleating agents, promoting the formation of additional crystalline regions within the polymer matrix.

Sample name	Storage modulus(MPa)	Young's modulus(MPa)	Ultimate tensile strength(MPa)
Neat PA6	1300±110	1500±200	49±5
PA6-5PF	2300±50	2500±300	53±4
PA6-10PF	2900±90	3200±50	60±4
PA6-20PF	3150±60	3300±50	56±2
PA6-30PF	3400±100	3900±100	49±1

General Approach of Adding Nanoparticles to Polymer Composite:

- Enhanced mechanical properties without a decrease in processability.
- >Improved flow behavior and viscosity control
- ➤ Improved compatibility with the polymer matrix
- ➤ Increased the sustainability of polymer composite.

Addition of CNC to Improve Mechanical Properties

Sample name	PA6(wt%)	PF(wt%)	CNC(wt%)
PA6-30PF-1CNC	69	30	1
PA6-30PF-3CNC	67	30	3
PA6-30PF-5CNC	65	30	5

Mechanical Analysis

At 25°C

Sample name	Storage modulus	Young's Modulus	Ultimate tensile strength
	(MPa)	(MPa)	(MPa)
PA6-30PF	3400±100	3900±100	49±1
PA6-30PF-1CNC	3550±80	3900±120	48±1
PA6-30PF-3CNC	4000±50	4100±50	49±1
PA6-30PF-5CNC	4500±100	4300±90	54±2

Rheological Analysis

- > The storage modulus of the polymer composite increases with the addition of CNC.
- > The increase in viscosity was not significant, the processability of the composite is maintained

Morphology of Fracture Surface

- ➤ Pulled-out fibers are longer in the sample without premixing.
- > Premixed samples show better dispersion of micronized fibers and more embedment in polymer matrices.
- > Sample with 5wt% CNC, the interface between fibers and polymer becomes stronger, so fibers are not pulled out.

Conclusion

- 1-We showed premixing ball milling method is a promising technique to make polymer reinforced with CNF.
- 2-By introducing PFs up to 30wt% via ball milling, we made a strong polymer composite.
- 3- CNCs had a superior effect on mechanical properties of composite reinforced with PFs.

Special Thanks

Water Uptake Capacity

- > Premixed samples have lower water absorption.
 - Dimensional stability
 - Better mechanical properties
- ➤ Higher water uptake for the HM sample is related to bad dispersion of PFs in the sample.

