Dialcohol Cellulose Nanocrystals Enhanced Polymerizable Deep Eutectic Solvent-Based Self-Healing Ion Conductors with Ultra-Stretchability and Sensitivity

Xia Sun

xiasun@mail.ubc.ca

Department of wood science

Faculty of forestry

Flexible electronics convert physical actions into electrical output, which can be easily sent and further processed.

traditional electronics

flexible electronics

- > Humidity
- > Strain
- > Temperature
- > Pressure

The wearable technology market is projected to reach \$186 billion (USD) by 2030.

Wearable Technology in Healthcare

Wearable electronics:

Advantages:

- 1) inherent flexibility
- 2) conforming to human body
- 3) designed as a network of sensors

Flexible electronics for health application Visual sensor Glucometer Pressure sensor Wearable watches Biosensor Strain sensor Photoelectric sensor Strain sensor Temperature Pressure sensor sensor Wearable shoes Wearable glove

Electronics. 2022; 11(5):716.

E-waste:

Plastic, Toxic materials, Heavy metal, etc.

World Economic Forum: A New Circular Vision for Electronics, Time for a Global Reboot

Cellulose: The most existing bio-polymer in the world.

Adv.Mater. Technol.2021, 6, 2000928

Advanced Functional Materials, 2022, 2202533

Challenge

The dispersion of nanocellulose is not ideal.

Procedure

Exploring new type of nanocellulose

CNCs with high dispersity in water were successfully fabricated through periodate oxidization and following reduction.

Successful preparation of Dialcohol CNCs

Formation of Polymerizable deep eutectic solvent

1: ChCl, 2: AA, 3: PDES

Dispersion of dialcohol CNCs

1: PDES

2: PDES/DCNCs (dialcohol CNCs)

3: PDES/CNCs (commercial CNCs)

Design route of PDES/CNCs ion conductors

Mechanical properties

High transparency

ellulose nanosellulose nan

Self-healing ability

The incision between the healing interface was disappeared after 72 h healing.

Electrical properties can also be healed in real time.

Showing adhesiveness towards various surfaces

Showing excellent strain sensitivity

The ion conductor also display stability with fast response.

Long-term stability

Applications as strain sensors

Applications as strain sensors for signal transmitting

The ion conductor maintain functionality after healing.

Prof. Feng Jiang

Dr. Yeling Zhu

Zhengyang Yu

Jiaying Zhu

Yalan Liang

Xia Sun

xiasun@mail.ubc.ca

Department of wood science
Faculty of forestry
University of British Columbia

