International Conference on Nanotechnology for Renewable Materials

BissMat

The Impact of Lignin Structure on Precursor & Activated Carbon Quality

Oliver Musl,¹ Jingqian Chen,¹ Pu Yang, ² Daniel Barker-Rothschild,¹ Yizhou Sang,¹ Xuetong Shi,¹ Farhad Ahmadijokani,^{1,3} Orlando Rojas.¹

> ¹ Biobased Colloids and Materials (BiCMat), CHBE
> ² Sustainable Functional Biomaterials Lab, Forestry University of British Columbia, Vancouver

³ Nanomaterials and Polymer Nanocomposites Laboratory, University of British Columbia, Okanagan

Activated Carbons are integral for our future.

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Bi@Mat

Lignins are ideal precursors for carbon.

- aromatic biopolymer with >60wt% carbon
- sustainable & renewable resource
- abundantly available & underutilized

CHALLENGES

complex chemical structure

impurities & residual polysaccharides

Lignins are a diverse class of biopolymers.

Structural Complexity in...

- molar mass
- functionality
- monomeric composition
- bonding pattern
- molecular architecture

Distribution in structural properties!

is based on...

- botanical feedstock
- pulping process & conditions
- isolation technology

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

MAD

Bi@Mat

Kraft lignins are abundant yet complex.

Kraft process

- dominates chemical wood pulping.
- \succ uses NaOH and Na₂S for lignin extraction.
- leads to intense changes in lignin structure.

265 kt/a isolated kraft lignin in 2018 and still growing.¹

🌲 Softwoods

- Spruce, Pine, Fir, Douglas Fir, Red Cedar, etc.
- Hardwoods
 - Eucalyptus, Beech, Birch, Poplar, etc.

¹Dessbesell et al. (2020)

Kraft lignins are abundant yet complex.

Changes in lignin structure due to kraft pulping

- decrease in molar mass
- increase in aromatic OH, COOH
- increase in monomer variability
- shift in bonding pattern towards condensed structures

kraft lignin

Musl et al. (2022)

Kraft lignins are abundant yet complex.

Changes in lignin structure due to kraft pulping

- decrease in molar mass
- increase in aromatic OH, COOH
- increase in monomer variability
- shift in bonding pattern towards condensed structures

Complex structure = complex thermal behavior.

Sameni et al. (2014), Liu et al. (2022), Wibowo et al. (2023)

Extensive comparative studies are lacking, despite the known heterogeneity of lignins

Carbonization performance depends on structure.

1. Broad glass transition (T_g)

due to complex structure, broad molar mass distribution and heterogeneity in functionality.

2. Presence of Impurities

e.g., inorganic salts, residual polysaccharides, etc.

PROBLEMS IN CARBONIZATION

- pore collapse by softening, particle fusing, ballooning, etc.
- inhomogeneous pore structure
- residual inorganic impurities

unrefined Lignins = high yield but low porosity

Controlling porosity is key for carbon materials.

Surface area & pore size distribution are key to enhance the performance of carbon materials.

Carbonization of nano-structured precursors

Zhao et al. (2021)

Lignin composition governs particle size & charge.

FΓ

Lignin selection as a tool for particle tuning

Preservation of precursor structure is needed.

Lignin nano-materials are prone to uneven **deformations under heating** due to a broad glass transition T_g.

Particle softening, coalescence, fusing, etc.

non-stabilized

pre-oxidized

pre-oxidized + slow heating rate

Zhao et al. (2021)

Preservation of precursor structure.

Strategies for precursor stabilization

- a. slow heating rate, < 1°K min⁻¹
- b. pre-oxidation in air flow
- c. adding CNC, Polyethylene oxide PEO, etc.
- d. lignin selection & refining

CNC stabilized

non-stabilized

Zhao et al. (2021)

Schlee et al. (2020)

high M_w fraction

low M_w fraction

Karaaslan et al. (2021)

Our on-going work on structure-property relationships.

LIGNIN FRACTIONATION BASED ON...

a. Molecular Size

b. Polarity

...TO CREATE A LIGNIN LIBRARY

Collection of different technical lignins (n >15) and their fractions (n > 130).

Objectives

- lignin structure profiling
- lignin selection & refining guide for applications
- accurate structure-property models

Refining the chemical structure of Lignins

soluble

insoluble

Our on-going work on structure-property relationships.

LIGNIN LIBRARY

Accurate relationship models need:

- high sample variability
- reduced structural complexity
- sufficient intersections

We need to disentangle the influence of functionality from molar mass.

MOLAR MASS g mol⁻¹

Conclusion & Outlook

Lignin structure affects

- Precursor properties
 - particle size, shape & charge
 - stabilization time & intensity
- Carbon properties
 - carbon yield
 - pore size distribution & surface area

Lignin selection is key!

Next steps

- Structure-property relationships
 - Modeling based on fractionated lignins (n >130)
 - Selection & Refining Guide for Lignins
- New activation strategies for lignin-derived carbons
- Test of carbon in energy storage applications

Acknowledgement

Dr. Oliver Musl

BiCMat, Rojas group, CHBE, UBC Vancouver

Polyaromatics, Extractives & Bioactives subgroup

oliver.musl@ubc.ca

BOKU Institute for Chemistry of Renewable Resources **Rosenau & Potthast** group Thank you for lignin analysis!

BRITISH

COLUMBIA

Chaires d'excellence en recherche du Canada

Canada Excellence Research Chairs

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Ministry of

Forests, Lands, Natural

and Rural Development

Resource Operations