International Conference on Nanotechnology for Renewable Materials

Hydrolysis With Hydrogen Chloride Gas as A Modular Step in Cellulose Nanocrystal Isolation

Eero Kontturi

Department of Bioproducts and Biosystems School of Chemical Engineering Aalto University (Finland)

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Research questions

Can we treat acid hydrolysis as a separate procedure in the preparation of cellulose nanocrystals?

Can we better control the yield, morphology and surface chemistry if hydrolysis is a separate step?

Outline

(1) Isolation of cellulose nanocrystals: background on acid hydrolysis

- (2) Liquid/solid vs. gas/solid system
- (3) Acid hydrolysis of cellulosic fibers by HCl (g)
- (4) Dispersion of CNCs from hydrolysed fibres

Acid hydrolysis

Degradation to glucose

 Extreme concentrations are required for complete degradation; e.g., 72% (w/w) H₂SO₄

Leveling-off degree of polymerization (LODP)

- When "extreme concentrations" are not used
- Levelling-off degree of polymerization: acid hydrolysis nearly halts at a certain point of degradation
- Common explanation for LODP: "amorphous" regions are hydrolysed and crystallites are left intact

Principle behind Cellulose Nanocrystal isolation

Acid hydrolysis targets the disordered regions in a cellulose microfibril.

Gas/solid system vs. liquid/solid system

Liquid/solid system

- Solid fibers / liquid (aqueous) acid (or other catalyst)
- The most common system for cellulose hydrolysis
- Usually under elevated temperatures (~80-100°C)
- Purification of the products is not straightforward

Gas/solid system

- Gaseous acid adsorbs on the fiber surface
- Fibers are covered by a thin layer of water
- \rightarrow Acid dissociates
- \rightarrow Hydrolysis proceeds
- \rightarrow After hydrolysis, the acid desorbs
- \rightarrow Purification of the products is simple

Isolation of cellulose nanocrystals (CNCs) by gaseous acid

CNC preparation – state of the art

- Source: Whatman 1 (from cotton linters)
- Temperature: 45°C
- Acid concentration: 64% (w/w) H₂SO₄ (aq)
- Time: 45 min

Purification steps:

- Centrifugation
- Dialysis (~7 days)
- Filtering
- Yields are generally low: 20-50%
- Water consumption is huge

CNC isolation by HCl vapor

- Gaseous HCl molecules adsorb on water-covered fibers
- Adsorbed HCl dissociates and catalyzes cellulose hydrolysis to LODP
- CNCs can be dispersed from hydrolyzed fibres in formic acid
- \rightarrow 97% yield

Aalto University School of Chemical Engineering

Kontturi et al. Angew. Chem. Int. Ed. 2016, 54, 14455.

Crystallinity in HCl (g) hydrolysis

NOTE: No change in morphology of the fibres NOTE: No mass transfer out of the fibres

- Acid hydrolysis of cellulose usually results in formation of extractable sugars
- Hot water extraction of the hydrolyzed filter paper failed to extract virtually *anything*

REASON: vapour phase acid causes crystallization of cellulose simultaneously with its degradation.

Kontturi et al. Angew. Chem. Int. Ed. 2016, 54, 14455.

Crystallinity in HCl (g) hydrolysis

Why does the crystallinity increase?

Under water, the energy required for crystallization is 10-fold to compared with the energy required in air.

Kontturi et al. Angew. Chem. Int. Ed. 2016, 54, 14455.

Upscaled reactor for HCl (g)

Aalto University School of Chemical

Engineering

- Custom built reactor enables upscaling from gram scale to hundreds of grams
- HCl (g) pressure can be rised to several bars instead of vapor pressure (<0.1 bar at most)

Pääkkönen et al. React. Chem. Eng. 2018, 3, 312.

Analytical detour

Crystalline/disorder transition in cellulose microfibrils visualized by HCl (g) hydrolysis

Pristine isolated microfibrils

Hydrolyzed microfibrils

Spiliopoulos et al. *Biomacromolecules* **2021**, 22, 1399.

Analytical detour: LODP visualized

School of Chemical

Engineering

Gas hydrolysis maintains morphology → Enables visualization

Spiliopoulos et al. Biomacromolecules 2021, 22, 1399.

Summary: CNCs by HCl (g)

- Hydrolysis down to LODP with HCl (g) proceeds rapidly at room temperature
- Crystallinity of cellulose is slightly increase during hydrolysis
- Reactor with HCl (g) is more efficient and more reproducible than HCl the use of vapor
- CNCs can be produced isolated from hydrolyzed fibers by prolonged sonication in formic acid

Dispersion methods for fibers hydrolyzed by HCl vapor

Dispersion problem

- After hydrolysis by HCl (g), the fibers are still intact, albeit brittle
- Washing is easy
- Dispersion into CNCs is difficult
- Proof-of-concept dispersion in formic acid is not realistic

Dispersion by polysaccharides

• Dispersion by carboxymethyl cellulose, xyloglucan or modified proteins

Fang et al. Biomacromolecules 2016, 17, 1458.

TEMPO-oxidation after hydrolysis

alto Universitv

naineerina

ool of Chemical

Basic idea:

• Introduce charge on the surface facilitates dispersion of CNCs

TEMPO: (2,2,6,6-tetramethylpiperidin-1yl)oxidanyl radical

 Used commonly to isolate cellulose nanofibres

Early attempt: TEMPO-oxidation of microcrystalline cellulose

Fine fraction: cellulose nanocrystals

Optical micrograph

Cryo TEM

- Narrow particle size distribution
- Individual particles are clearly rod-like cellulose nanocrystals
- Yield only ~4%

Peyre et al. Green Chem. 2015,17, 808.

TEMPO-oxidation after hydrolysis

Lorenz et al. Faraday Discuss. 2017, 202, 315.

TEMPO-oxidation for a more accessible substrate

- Xerogel of bacterial cellulose was used
- \rightarrow High porosity
- \rightarrow High accessibility

80% yield of CNCs

Aalto University School of Chemical Engineering

Pääkkönen et al. ACS Sustainable Chem. Eng. 2019, 7, 14384.

Phosphorylation of CNCs

Kröger et al. Biomacromolecules 2023, 24, 1318.

Following phosphorylation

Kröger et al. Biomacromolecules 2023, 24, 1318.

Conclusion

- CNCs are easy to purify after hydrolysis in gas/solid system
- Yields are high
- Dispersion is a bottleneck
- Dispersion methods from fibers hydrolyzed HCl (g):
 - Water-soluble polysaccharides as dispersion agents
 - TEMPO-oxidation
 - Phosphorylation

Acknowledgements

Research group: Materials Chemistry of Cellulose

Particular thanks: Dr. Timo Pääkkönen Dr. Panagiotis Spiliopoulos Marcel Kröger Dr. Marcel Lorenz Dr. Jessie Peyre Dr. Wenwen Fang Anne Meriluoto Dr. Paavo Penttilä

Funders: Academy of Finland Business Finland

