
Electrochemical Dewatering of 
Cellulosic Nanomaterials

Santosh H. Vijapur, Huong Le, Santosh More, Timothy D. Hall, 
EJ Taylor, Maria Inman, & Stephen Snyder 

Faraday Technology, Inc.

Kim Nelson 
GranBio USA

Robert Handler
Michigan Tech University

santoshvijapur@faradaytechnology.com



2

Nanocellulose



Challenges:
• Cellulosic materials contain significant water content
• Not economical to ship long distances

Opportunity:
• Development of novel electrochemical technology to dewater cellulosic materials

o Maintain the material properties when dried and re-dispersed
o Economical, scalable, and energy efficient
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Problem/Opportunity



1. ElectroDewatering uses electro-osmotic, electrophoresis, and 
viscosity moderated process.

2. Achieves high solid content
a) Up to 70 wt.% solid content 
b) ~25 wt.% solid content without hornification (batch)
c) ~17 wt.% solid content without hornification (alpha-

scale continuous)

3. Highly efficient
a) 50% and 72% reduced energy  requirements for CNF 

and CNC
b) 31% reduction in cost per ton for processing CNC
c) 51% reduction of emissions for processing CNC

4. Can be batch or continuous process

50% 
energy 

reduction

72% 
energy 

reduction
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Key Results To Date



• Continuous processing
• Demonstrated at 0.6 to 2 tpy
• Scalable to

• 20 tpy (Current Goal)
• 200 tpy (Pilot scale)
• 2000 tpy (Full scale commercial)

• Other potential applications
• Municipal Wastewater
• Black liquor
• Algae
• Food processing products and wastes
• Coal fines
• Refuse slurries
• Sewage sludge
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ElectroDewatering Apparatus

“Method and Apparatus for 
Electrochemical Dewatering of 
Suspensions of Cellulosic 
Nanomaterials” 
US Pat. Appl. No. 62/842,037, 
filed U.S. utility on March 10, 
2020; 
PCT Patent Application No. 
PCT/US20/30232, filed April 
28, 2020



• Utilizes a combination of 
electrochemically driven H2O 
consumption and/or CNF-CNC/H2O 
separation mechanisms

• Minimize structural damage of the 
nanocellulose

• Low-energy process by emphasizing 
low-energy separation mechanisms
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Technical Approach

DeWatering
Mechanism

Function Energy 
Requirement

Water Consumption:
Joule Heating Water vaporization HIGH

Electrolysis Water electrolysis HIGH
Separation/Transport:

Electroosmotic Water transport to cathode LOW
Electrophoretic CNC-CNF transport to anode LOW

Viscosity Rotation rate effects: wall slip, 
shear banding  

LOW
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Preliminary Batch-Scale

Sub-alpha scale batch reactorSub-scale batch reactor

• 25 mL beaker with paddle wheel (sub-scale batch reactor)
• 50 mL beaker with paddle wheel (sub-scale batch reactor)
• 100 mL screw extruder based batch (sub-alpha scale batch reactor)
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Range of Final Solid Content



• Dispersion analysis: Re-
dispersion occured at ~ 0.2 wt%
in water using a vortex mixer for
2-10 minutes
o Full redispersion required in 10

minutes

• Nanocellulose structure/size:
Optical microscopy
o Hornified/un-redispersed samples

were rejected

Characterization
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Re-dispersible CNCs at 
~25 wt.% solid content

Un-dispersible  CNCs at 
~61 wt.% solid content



• Batch beaker with paddle wheel
o Sub-scale reactor

• Screw extruder based batch to continuous system
o Sub-alpha scale batch
o Alpha-scale continuous (up to 2 ton/yr)
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Process Scale-Up

Sub-alpha scale batch reactor Alpha scale continuous reactorSub-scale batch reactor



Water
drain

Nano-
cellulosePiston“Method and Apparatus for 

Electrochemical Dewatering of 
Suspensions of Cellulosic 
Nanomaterials” 
US Pat. Appl. No. 62/842,037, 
filed U.S. utility on March 10, 
2020; 
PCT Patent Application No. 
PCT/US20/30232, filed April 
28, 2020
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Alpha-scale Apparatus



Mechanical 
Extrusion

Dewatering

Electro-
Dewatering
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ElectroDewatering 
Demonstration









• Observed 50% and 72% energy saving compared to the latent heat of vaporization calculation for CNF/CNC
• Alpha-scale system can process:

• 0.6 tpy dried CNF
• 1.3 to 2 tpy of dried CNC
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Energy Comparison



CNF CNC

• ElectroDewatering shows similar solid content versus energy regardless of type of operation batch or continuous (2 tpy)
• Dewatering mechanism seems to change with solid content, where

o Low energy separations (electroosmotic/ electrophoretic) dominates up to 20 wt.% solids
o Higher energy separations (electrolysis / joule heating) are required for achieving >25 wt.% solids
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Energy Comparison



Life cycle analysis will be utilized to improve ElectroDewatering method and apparatus such that these processing steps can
be transitioned to an industrial scale
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Life Cycle Analysis (LCA)

• ElectroDewatering provides significantly less global warming 
potential than dewatering method 1 for CNC

• 51% reduction in GHG emissions

LCA Scenarios
Initial 

% solids
Dewatering Step 
(% output solids)

Drying Step
(% output solids)

CNF
3% Method 1 (100%)
3% Method 2                   (30%) Method 1   (100%)
3% Method 3                   (23%) Method 1   (100%)
3% ElectroDewatering   (14%) Method 1   (100%)
3% ElectroDewatering   (18%) Method 1   (100%)

CNC
7% Method 1 (100%)
7% ElectroDewatering   (14%) Method 1   (100%)

* Client confidentiality, unable to reveal the Methods



16

Techno-Economic Analysis (TEA)
Techno-Economic analysis will be used to improve ElectroDewatering method and apparatus such that these processing
steps can be transitioned to an industrial scale

• ElectroDewatering process works best for CNC
• 31% reduction in cost per ton of dried CNC

Initial 
% solids

Dewatering Step 
(% output solids)

Drying Step
(% output solids)

CNF
3% Method 1 (100%)
3% Method 2                   (30%) Method 1   (100%)
3% Method 3                   (23%) Method 1   (100%)
3% ElectroDewatering   (14%) Method 1   (100%)
3% ElectroDewatering   (18%) Method 1   (100%)

CNC
7% Method 1 (100%)
7% ElectroDewatering   (14%) Method 1   (100%)

* Client confidentiality, unable to reveal the Methods

TEA Scenarios



• Demonstrated ElectroDewatering process for dewatering of cellulosic materials

• Achievements:
 Design/build of alpha-scale continuous ElectroDewatering system

o System throughput of up to 2 tpy of dried cellulosic nanomaterials demonstrated
 Validated dewatering performance for cellulosic nanofibrils (CNF) and cellulosic nanocrystals (CNC)

o Up to 70 wt.% solid content
o ~25 wt.% solid content without hornification in batch operation
o ~17 wt.% solid content without hornification in alpha-scale continuous operation
o CNC/CNF maintained structural integrity after re-dispersion
o 50% and 72% reduced energy requirements for CNF and CNC
o TEA suggested a 31% reduction in cost per ton for CNC
o LCA suggested a 51% reduction of emissions for CNC
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Summary



• Investigate ElectroDewatering approach for:
o Other cellulosic materials
o Pharmaceuticals
o Waste treatment, etc.

• Modify ElectroDewatering system design to:
o Reduce energy consumption
o Increase solid content without hornification

• Scale process to 20 tpy dry cellulosic materials
o Target demonstration for CNC is FY24
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Next Steps
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