International Conference on Nanotechnology for Renewable Materials

Surface Modification of Cellulose Nanofibers: Mechanochemical Esterification & Trifluoroacetylation

Robert J. Nicholas and Alexander Wei Purdue University, West Lafayette, IN Wed, June 14, 2023

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Cellulose Nanofibers (CNFs) are a Promising Scaffold for Functionalization

- Innovations in cellulose-based materials are frequently driven by surface modifications
- Cellulose nanofibers (CNFs) have a high density of surface hydroxyl (OH) groups that can be exploited for adding new functionality
- CNFs are difficult to disperse in solution and have propensity to agglomerate
- Removing bulk water while preventing hornification facilitates CNF functionalization

Possible routes for cellulose functionalization

Our group has developed a sustainable protocol to effectively functionalize CNFs and is investigating applications and further modifications of CNF-based materials

CNF Dewatering Process: from Slurry to Dry Powder

NIVERSITY Mavlan, M.; Chang, T.; Feng, R.; Wilkinson, J. W.; <u>Nicholas, R. J.</u>; Idahagbon, N. B.; Youngblood, J. P.; Wei, A., "Mechanochemical Esterification of Cellulose Nanofibers Lyophilized from Eutectic Water-tert-Butanol Mixtures." *Manuscript accepted*.

Esterification of Lyophilized CNF by Mechanochemistry

E R S I T Y[®] Mavlan, M.; Chang, T.; Feng, R.; Wilkinson, J. W.; <u>Nicholas, R. J.</u>; Idahagbon, N. B.; Youngblood, J. P.; Wei, A., "Mechanochemical Esterification of Cellulose Nanofibers Lyophilized from Eutectic Water–tert-Butanol Mixtures." *Manuscript accepted*.

Oleyl-CNF as a Functional Superhydrophobic Material

Contact angle: 159°

Forms water repelling barrier to surfaces

From top to bottom: Polystyrene, cardboard, aluminum, glass

Surface Characterization of Cellulose Nanofibers (CNFs)

"Degree of Substitution" (DS) as a figure of merit:

 $DS = \frac{162 \times (m_2 - m_1)}{m_1 \times M_{acyl}}$

162 = molar mass of anhydroglucose ($C_6H_{10}O_5$) m_2 = mass of esterified CNF m_1 = mass of initial CNF M_{acyl} = molar mass of acyl group (RCO)

- Facile method for quantitative DS remains a challenge in the field
- Mass-based methods ambiguous, due to CNF fiber width distributions
- Solid-state ¹³C NMR is quantitative but time-consuming

Issues related to surface functionalization (SF):

- Are all surface OHs modified? Which ones?
- Are SF metrics reproducible?
- Can SF metrics be used to fine-tune chemical properties, such as hydrophobicity and drug loading?

SF values should correlate more precisely with physicochemical behavior

Trifluoroacetate (TFA) esters for SF quantitation by solution F-19 NMR spectroscopy

Analytical workflow:

- TFA esters are labile and released by mild solvolysis
- Standard esters are stable in the presence of TFAA
- TFA molarity can be quantified by solution ¹⁹F NMR

Survey of TFAcylation Conditions

Trans-esterification of TFAcylated Methyl Glucoside

- Mild basic conditions
- TFA-CD₃ ester can be quantified by ratiometric peak integration versus CF₃Ph using solution ¹⁹F NMR.
- Can be applied directly toward TFA-CNFs suspended in CD_3OD for quantitative DS
- Solution NMR-based approach has great practical advantages over SS-NMR methods with similar goals

Applying TFAcylation Conditions to CNFs and E-CNFs

Ongoing Workflow for Preparing TFA-CNF for F-19 NMR Analysis

Dried TFA-CNF (~20 mg)

- Swelling TFA-CNFs in pyridine releases residual pyridinium salts
- Acetone precipitates TFA-CNF and enables filtration
- TFA-CNF is fully dried under vacuum before saponification with CD₃OD

Add CD₃OD

 W/K_2CO_3

¹⁹F solution NMR

spectroscopy

(TFA quantitation)

Conclusions and Future Directions

- Efficient esterification of CNFs after lyophilization from 10% TBA eutectic
- Can install TFA groups onto accessible surface OH's as handles for spectroscopic characterization
- Saponification with mild base allows for solution ¹⁹F NMR analysis
- Can correlate mass-based DS and ¹⁹F NMR signal of free TFA
- TFAcylation and saponification of E-CNFs is in progress

Acknowledgements

- PI: Alexander Wei
- Wei Lab
 - Nosa Idahagbon
 - Victor Jammal
- Funding:
 - National Science Foundation (NSF)
- TAPPI Nano Conference

<u>Supplemental: SEM of Freeze-Dried Eutectic</u>

TBA (wt%)	Specific surface area (m²/g) ^a
0	2.44 ± 0.03
10	23.47 ± 0.17
20	23.83 ± 0.17
30	20.47 ± 0.15
40	22.08 ± 0.14
50	19.57 ± 0.12

0% TBA

10% TBA

Mavlan, M.; Chang, T.; Feng, R.; Wilkinson, J. W.; Nicholas, R. J.; Idahagbon, N. B.; Youngblood, J. P.; Wei, A., "Mechanochemical Esterification of Cellulose Nanofibers Lyophilized from Eutectic Water-tert-Butanol Mixtures." In review.

Supplemental: Current Strategies to Quantify Surface Moieties

Dynamic Nuclear Polarization (DNP) enhance NMR^[1]

- Sensitive to trace amounts of TEMPO moieties
- Provides precise estimation of drug loading within ~1 wt%

Quantification of –OH groups by TFAA Derivatization^[2]

- Measure amount of –OH on plasma oxidized poly(propylene) samples using TFA groups
- Quantifiable by XPS analysis with 95% confidence level

