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Conventional Fertilizers
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Controlled-Release Fertilizers (CRFs)

CRFs

G;’afted CRFs are an alternative to increase
L crop yield by optimizing Nutrient
Use Efficiency (NUE)
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Obijectives of this Investigation

To synthesize a CRF by employing chitosan, MMA
(methyl methacrylate), and urea through the process of
spray drying. This objective focuses on the production
of a fertilizer that releases nutrients gradually over
time.

Modelling the spray drying process to obtain
controlled-release fertilizers, enabling the prediction of
particle properties and thus enhancing the product's
quality.

Improved foo‘ \ Improved
production environmental
health
High production - A
benefits and
low cost production Su St.

Agriculture

Minimization of off
site environmental
impacts

Optimized

resource usage
and conservation

Reduced
environmental risk

Ali Aslam et al, 2022
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Turbulent flow Computational

Fluid Dynamics
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Preliminary results with CFD software

Particle: Particle velocity magnitude (m/s)

0.73
0.7
0.65
0.6
0.35
0.3
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

()

e

nozzle

t(s)



Particle mass (kg)

Preliminary results with CFD software
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Preliminary Conclusions

« Controlled-release fertilizers (CRFs) derived from biopolymers present a
viable solution for implementing sustainable agricultural practices.

 The process of spray drying enables the conversion of controlled-release
agrochemicals (like CRFs) into powder form. This conversion is anticipated
to enhance storage, transportation, and application procedures of these
products in the field.

 Employing Computational Fluid Dynamics (CFD) offers the possibility of
accurately predicting the properties of dried CRFs. This technique could
potentially assist in scaling up the spray drying process, resulting in more
efficient resource utilization.
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Chemical deacetylation has many disadvantages like high energy consumption and
environmental pollution problems. An alternative method of enzyme deacetylation has been

developed to overcome these drawbacks.
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The solubilization occurs by protonation of the —NH2 group on the C-2 position of the D-glucosamine
repeat unit, whereby the polysaccharide is converted to a polyelectrolyte in acidic media



Representing schematics for nutrient release stages in two different CRFs configurations: (a) fertilizer (core) covered by
a biobased polymer (coating) to form a granule; and (b) fertilizer particles dispersed into the biobased polymer matrix.
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Nutrient Release Behavior in CRFs

- 1a: Bio-based epoxy (7.5%) [24]
~/\-2a: Bio-based polyurethane/20% epoxy resin (7%) [46]
57 3a: Bio-based polyurethane fumed silica (3%) [40]
~@- 4a: Bio-based polyurethane fumed silica (2%) (40]
~¢- 5a: Bio-based polyurethane (7%) [34]
~{J- 6a: Siloxane/polyether dual modified
bio-based polyurethane (7%) [34]
—@- 7a: Bio-based polyurethane
diatomite-silica hydrosol (7%) [33]
- 8a: Bio-polyurethane 15%/wax (3%) [107)
~@-9a: Bio-based polyurett (13.7%) [85]
~O- 10a: Bio-based polyurethane/superabsorbent (17.2%) [85]

-~ 11a: Polyurethane based on dimer acid (8%) [60]
L

—- 1b: Bio-based waterbone polyester [206]
2: 2b: Sustainable poly(eugenol sulfone) [16]
3b: Double-layer polyacrylic acid/lignin/clay
nanohybrid composite [109]
4b: Bio-based polyurethane/epoxy resin 30% [32)
~@- 5b: Chitosan hydrogel {urea/acetic acid 1.5:1} [139]
<@ 6b: Chitosan hydrogel {urea/acetic acid 2:1} [139]
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Mt: nutrient mass diffused up to time t; Mo=: nutrient mass diffused after infinite time (equilibrium); k, kkp, kO, k1, and

k: diffusion constants; kH, k2:

dissolution constants; a: initial nutrient released; b: release constant; n: diffusion exponent; D: diffusion coefficient, r:
radius of the fertilizer granule;
CO: initial concentration of nutrient; Cee: concentration of the fertilizer in the sphere at infinite time, A, B, C, and E:
sigmoidal equation parameters.

Gutierrez et al. 2022




Absorption Routes for Nanoscale CRFs
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Potential Biowaste for Obtaining Controlled-Release Fertilizers (CRFs)

Agriculture Forestry

Grafted Polymer coated
polymers fertilizer granules

Granule/Sphere Hydrogel/
Prill/Bead/Pellet Polynetwork

Bio-based
polymers

Tablet

Synthetic
polymers
Fertilizer dispersed in

a polymeric matrix

« Plasticizer *Mineral
*Crosslinker *Clay

* Additive * Aldehyde
*Sealant * Organic material

+Organometallic +Lignocellulosic residue

‘Biodegradable materials come from a broad range of sources: agriculture (e.g., wheat straw, rice husk,
starches, corn stover, corn cob, branches, sugarcane bagasse), forestry (e.q., forest litter, oat hull, birch
wood), industrial activities (e.g., Kraft and sulfite liquors from pulp and papers), and food industry (e.g.,
leftovers, peels, waste frying oil, chicken residues). The value-added products that could be obtained from
organic waste are dependent on the primary components present” (Gutierrez et al., 2022)
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Chitosan is a biopolymer that reduces plant
diseases through two main mechanisms: (1)
Direct  antimicrobial function  against
pathogens, including plasma membrane
damage mechanisms, interactions with DNA
and RNA (electrostatic interactions), metal
chelating capacity, and deposition onto the
microbial surface, (2) Induction of plant
defense responses resulting from
downstream signalling, transcription factor
activation, gene transcription and finally
cellular activation after recognition and
binding of chitin and chitosan by cell surface
receptors. This biopolymer have potential
with capability to combating fungi, bacteria,
and viruses phythopathogens.

secondary metabolites

Chitosan to induced resistance
PR protein CH0H
Defense enzyme 1
o W

.  H . NHp
activated by Nitric Oxide

Chitosan as a soil
amendment for microbial
enrichment of soil

<
~ \e\

Chitosan to enhance plant
growth and development
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