International Conference on Nanotechnology for Renewable Materials

MAINE

A supercritical CO₂-based process to generate cellulose nanofiber/polylactic acid composites

Alyson Manley, Sabrina Sultana and Carl P. Tripp

University of Maine

June 14th, 2023

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Goal: 3D print bio-based composites on the pilot scale

Surface Modification

Poly Lactic Acid (PLA)

CNF 97% water!

The Problem: CNF likes to aggregate during the drying process

Compounding of supercritical CO₂ "dried" CNF with PLA - Lu Wang

Can we use contact dewatering and avoid ethanol?

Water is retained inside the gel-like structure of CNF

Adsorption of the CNF on the PLA disrupts the gel-like structure allowing the release of water

Office of Science

Contact Dewatering/Liquid CO₂ Solvent Exchange

4 Quadrants: Why is supercritical CO₂ better at drying CNF?

Liquid CO₂ Solvent Exchange + scCO₂ Drying

10

SEM (micron-scale)

Melt Mixing- Supercritical Dried 10% CNF/PLA

Before Melting

After Melting

Melt Mix

Supercritical CO₂ Drying of CNF

Scale- up

Scale up

properties

Supercritical Fluid Deposition System 0.2 g CNF/PLA

--

New Supercritical Fluid Deposition System 40 g CNF/PLA

Supercritical CO₂ Drying of CNF-

Supercritical CO₂ is better at removing the strongly adsorbed water

Liquid CO₂ Non-wetting CNF CNF Supercritical CO₂ wetting

Adsorbed water on CNF

Nakamura et al. Textile Research Journal, pp. 607, 1981

O'Neill et al. Scientific Reports 7:11840, 2017

Rheology

CNF reinforced PLA foams

Summary

- Created CNF-reinforced PLA composites by pre-mixing the CNF suspension with powdered PLA
- Utilized contact dewatering with liquid and supercritical CO_2 to dry the CNF/PLA suspension

ADVANTAGES

- Drying process does not require an ethanol exchange
- Aggregation of CNF fibers with drying is minimized

International Conference on Nanotechnology for Renewable Materials

Thank You

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

a

c)

b)

25

Isostatic Melt Mixing: Vent Temperature?

Lowers melting temperature of PLA from 180 C to 130 C.

XRD of acetylated CNF in ScCO₂

Intensity (a.u.)

