Nanolime Templated Cellulose Nananofibers for Controlled Atmosphere (CA) Food Packaging Films

Karthik R. Shivakumar², Phillip Choi², <u>Yaman Boluk¹</u>

¹ Department of Civil and Environmental Engineering

² Department of Chemical and Materials Engineering

University of Alberta

- Objectives
- Preparation of cellulose nanofibers (CNF)
- Growth of Ca(OH)₂ nanoparticles on CNF
- Carbonation and CO₂ control
- Preparation of packaging material
- Concluding remarks

Controlled Atmospheric Packages

- Respiration of fruits and vegetables varies with the temperature of the surrounding atmosphere.
- Therefore, oxygen and carbon dioxide concentration in the enclosed food packaging vary due to the respiration of fresh produces and also the permeability of the packaging film.
- An intelligent packaging material has to control the confined atmosphere of food by allowing slow but reduced oxygen absorption of the produce and forming a selective barrier to carbon dioxide and water vapor.
- Thus, the packing film creates a modified atmosphere that internally regulates gas composition within the package, regulates the ripening process, and extends the postharvest life of packaged fresh produces.

Passive Packaging

Modified atmosphere Packaging

Active Packaging

Microplastics: Marine Anthropogenic Litter

Preparation of Cellulose Nanofibers (CNF)

Cellulose nanofibers are prepared following the procedure:

- Harwood BCTMP
- **TEMPO mediated oxidation following:**
- T. Saito, A. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, 5 (2004) 1983-1989.
- Mechnical defibrillation by Supermasscolloider <u>http://www.masuko.com</u>

TEMPO oxidation

Mechanical Defibrillation

TAPP

DIVISION

CNF - Kraft pulp

CNF - BCTMP

Extent of oxidation

VISION

TEM – CNF made from Beaten Kraft pulp

CNF COO- 1.7 mmol

CNF COO- 1.3 mmol

CNF COO- 1.1 mmol

VISIO

Nanolime Templated Cellulose Nanofibers Growth of Ca(OH)₂ nanoparticles on CNF

Growth of Ca(OH)₂ Nanoparticles Without Cellulose Nanofibers

Reaction condition:

 $1.25 \text{ mL (0.4M)} + \frac{1.25 \text{ mL (0.4M)}}{\text{Ca(NO}_3)_2} + \frac{1.25 \text{ mL (0.4M)}}{\text{NaOH}}$

SEM image after 90min reaction in water

30.0kV 8.1mm x8.00k SE(U) 3/18/2017

Sol-gel and solvothermal synthesis

IBZ - Salzchemie GmbH & Co. KG https://ibz-freiberg.de/en/our-company

using an alkoxide route were given the trade name CaLoSil®

SEM image of CaLoSil®

VISIO

500nm

30.0kV 8.2mm x90.0k SE(U) 3/21/2017

Growth of Ca(OH), Nanoparticles on CNF (0.1%)

Small scale *Reaction MEB-214:*

> 1 mL (0.1% CNF) + 2.5 mL (0.4M) (0.7mmol/g COOH)

Ca(NO3)2

2.5 mL (0.4M) NaOH

SEM images af 1h Reaction after 6 days suspension in water

19-16 HINE 2022 . VANCOHVED САМАЛА

Growth of Ca(OH)₂ Nanoparticles on CNF (0.3%)

Reaction MEB-222: Medium scale

100 m (0.2% CME)	+	250 mL (0.4M)	+	250 mL (0.4M)
100 IIIL (0.5% CINF)		Ca(NO3)2		NaOH
(0.7mmol/g COOH)				

SEM images af 1h Reaction after 1 day suspension in water

Carbonation of Nanolime Particles

Experimental Setup

22

- 50% CO₂ Air cylinder
- CO₂ pressure
- RH% was maintained at 100% by placing a vial filled with water
- Samples were removed after 7 days

Growth of Ca(OH)₂ Nanoparticleson CNF

SEM images after 4 days suspension in water

12-16 HINE 2023 . VANCOUVER RC CANADA

Carbonation in CO2-rich atmosphere

12-16 LUNE 2022 . VANCOUVER RC CANADA

CNF-1.7/Lime Fresh vs Carbonated

12-16 JUNE 2023 \bullet_0^2 VANCOUVER, B.C. CANADA

X-ray diffraction

CNF-1.35/Lime Fresh vs Carbonated

Preparation of Nanolime templated CNF coated paperboard

12-16 JUNE 2023 $\cdot \frac{2}{3}$ VANCOUVER, B.C. CANADA

BOX coated with HEC

BOX coated with HEC + 10% CNF 1.7/Lime

12-16 JUNE 2023 \bullet_4^2 VANCOUVER, B.C. CANADA

Concluding Remarks

- TEMPO-prepared carboxylate CNF surfaces are excellent templates for growing nanosized Ca(OH)₂.
- Nanosized Ca(OH)2 particles are good means to control CO₂ adsorption.
- Nanolime-deposited CNF particles can be used to coat paperboard and prepare boxes for fresh food packaging.

12-16 JUNE 2023 \bullet_5^2 VANCOUVER, B.C. CANADA

Thank you Yaman Boluk yaman.boluk@ualberta.ca

12-16 JUNE 2023 \bullet_6^2 VANCOUVER, B.C. CANADA

Acknowledgment of Funding

CANADA FOUNDATION FOR INNOVATION FONDATION CANADIENNE POUR L'INNOVATION

