International Conference on Nanotechnology for Renewable Materials

Effect of Cellulose Nanofibrils and Lignin Nanoparticles on the Properties of Lightweight Materials for Oil/Water Separation

Polianna S. Ferreira

Eupidio Scopel

Camila A. Rezende

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

LIGNOCELLULOSIC LIGHTWEIGHT MATERIALS

경험 PROMISING Oil spill cleanup

∠ Renewable sources

∠∂ Ease of use

Avoid second contamination

Lignocellulosic Lightweight Materials

Lightweight materials produced using lignocellulosic fibers typically show **low mechanical resistance** under stress.

Sugarcane bagasse

Lignocellulosic Lightweight Materials 5 Water Hydrophilicity 52 sorption addition, most of these In natural materials absorb both water and oil, limiting their use in water-oil separation.

LIGNOCELLULOSIC LIGHTWEIGHT MATERIALS

Lignocellulosic lightweight material Apparent density (0.09 g/cm³) Water contact angle 117° (hydrophobic surface)

> Young Modulus 0.46 ± 0.07 MPa

Ferreira, E. S.; Cranston, E. D.; Rezende, C. A. ACS Sustainable Chem. Eng. (2020)

Hydrothermal pretreatment

Here, we investigated:

 The ability of cellulose nanofibrils
 (CNF) to act as nanofiller in lightweight materials in comparison with strategies
 using cross-linking with citric acid.

CNF can be a greener and less toxic alternatives to the typical chemical crosslinking agents b

2. The influence of **lignin nanoparticles** (LNP) in the hydrophobicity of the lightweight materials from sugarcane bagasse.

Methodology

CNF PREPARATION

Results

CNF characterization

NANO

9

Zeta potential: -49 ± 1 mV

Hydrophobicity

Lightweight materials containing 0.1% CNF

1 Porosity

12

Hydrophobicity 2 Roughness

Lightweight materials containing 0.1% CNF

Паратияния и порти и порти

Hierarchical micro- and nanoroughness

3 Lignin redeposition

FESEM images of the surface of the non-treated and treated bagasse

5<u>0</u>0

Atomic force microscope infrared spectroscopy of sugarcane bagasse

Α

NANO

15

Distinct chemical composition:

- Green: lignin-rich
- Blue: smoother domains

> The arrows in (A) and (B) indicate **lignin regions** equivalent of green point in AFM topography

Oleophilicity

Light petroleum (°API > 40)

Selective removal of oil from the water surface

Conclusion

18

This study,

showed the possibility of producing sustainable

LIGNOCELLULOSIC-BASED MATERIALS combining the

presence of **CELLULOSE** and **LIGNIN** in

different scales (micro and nanometric) as potential materials for **OIL SORPTION.**

THANK YOU FOR YOUR ATTENTION!

Polianna da Silva Ferreira p234897@dac.unicamp.br

Acknowledgments

