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Oak Ridge National 
Laboratory (ORNL)
The United States' largest multi-program science and 
technology laboratory



ORNL’s Unique Capabilities
World-Renowned 
Computing

SNS: World’s most intense 
pulsed neutron beams

HFIR: world’s highest flux 
reactor-based neutron 
source 

Zeiss Enclosure: 
comprehensive powder-to-
part methodology for 
manufacturing-born 
qualified components  

Advanced 
Characterization

Nuclear & Advanced 
Manufacturing

Materials 
Development

Frontier: next-level exascale 
system >1 quintillion 
calculations per second

Summit: nation’s most 
powerful open-science 
supercomputer

Visualization Lab: Voxel-
based approach to 
inspecting, evaluating, and 
understanding AM and 
composite components 

Manhattan Project: 76 years 
of nuclear research

Radioisotope: projection, 
fusion, and fission

TCR Program: revitalizing the 
nation’s capabilities in 
nuclear power by 
substantially reducing the 
cost and accelerating the 
deployment of new reactors

400+ researchers, scientists, 
and engineers across a 
range of material systems 

Cutting-Edge Research
activities in materials for 
harsh environments, new Al 
alloys, ceramics, metals, 
fiber production, and bio-
derived polymers 

Multiphase, hybrid, and 
advanced materials R&D



Manufacturing Demonstration Facility
Core Research and Development
Leveraging ORNL’s fundamental 
research to solve challenges in 
advanced manufacturing
 FY20 80% of the MDF Budget
 80-100 publications annually

Industry Collaborations
Cooperative research to develop 
and demonstrate advanced 
manufacturing with industry and 
universities 
 FY20 10% of the MDF Budget
 22 licensed technologies; >50 

patent applications

Education and Training
Internships, academic collaborations, 
workshops, training programs, and 
course curriculum for universities and 
community colleges
 Incorporated into our projects
 1,000 student internships

>100 staff members and ~200 people 
total when including interns, students and 
co-located industry partners 

1,000 internships from 700 unique 
students since 2012

>180 partnerships

>50 university collaborations 

>130 honors/awards since inception

>80 advanced manufacturing systems 
with 60% placed at the MDF by no-cost 
leasing (i.e., CRADA)

MDF by the numbers
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Carbon 
Fiber (CF)

Cellulose 
nanofibrils (CNF)

Cellulose 
nanocrystal (CNC)

Density (g/cm3) 1.8 - 2.2 1.5 1.5
Tensile Strength 

(MPa) 4000 < 3000 10,000

Modulus of 
Elasticity (GPa) 235 <150 150

Cost ($/lb) $$$ $ $
Sustainable NO YES YES

Advantages:
Abundant, renewable 
resource with price stability • 
compostable •biocompatible 
• high strength and modulus • 
lightweight • shear thinning 
thickener (stable against 
temperature and salt addition)

Lamm, M.E. et. al. Polymers, 2020, 12 (9), 2115.
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Challenge: Very hydrophilic surface 
of CNF can lead to incompatibility 
with hydrophobic polymer matrices

Modifying the surfaces of CNFs can:
 Reduce surface energy and hydrophilicity
 Reduce agglomeration during drying
 Reduce energy requirement for drying CNF
 Improve the compatibility with polymers and 

lead to high performance bio-composites

Solution: Surface modification

PETG: polyethylene terephthalate-glycol modified

CNF

• Adsorption (interact with surface)

• Molecular grafting 
(covalently attached small molecules)

• Polymer grafting 
(covalently attached large molecules)
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O R1

H2O

R2H2NO NH2

nR1
N

R2
N:

CNF Imine @ CNF

hydrophillic: soluble in water, able to interact with CNF in aqueous phase
hydrophobic:

 prevent water solubility of the formed imine

O O

Glutaraldehyde O

NH2H2N

4,4′-Oxydianiline

Experimental Design

Incorporation of second hydrophobic portion forces the newly 
formed polyimine to co-precipitate with the entwined CNF, 

preventing the reverse hydrolysis reaction

• Fast react rate 
• Unstable in water and tend to 

hydrolyze back into reactant
– Imine-dynamic covalent bond 
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Verification of Imine 
Formation
 FTIR confirmed presence of 

new bonds consistent with 
polyimine formation
 C=N stretch
 C-N stretch
 Presence of aromatics C

 XPS changed with polyimine 
synthesis
 Appearance of N1s
 Increase in C-OH
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20µm 20µm

20µm 20µm

Morphology Changes 

 Incorporation of polyimine produced 
more fibrillar morphology in drop-cast 
samples

Presence of N confirmed using EDX

2µm 2µm

CNF CNF-Imine

C

O N
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PETG composites

5% CNF-Imine

10% CNF-Imine

20% CNF-Imine

30% CNF-Imine

PETG composites feature 
better interface between 

fibers and polymer matrix, 
regardless of fiber content
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Aromatic stacking 
between side chains
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Filter press
Wash material and 
press to 20% solids

Mill
Grind oven-dried material 

in fluffy fibers

100L reactor

3 wt.% CNF in 
water

Dried, modified CNF 
ready for melt 
compounding

Allows us to surface-modify up to 3 lbs. of CNF 
(solid content, wt.%) at a time. 
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Produced 10 kg. of 
composite pellets

Compounding Conditions
• Temperature: 150-220 C
• Torque: 50-65
• Melt Temperature:  220-225 C
• Throughput: ~8 kg/hr
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Print Slice Setup
• Nozzle Size: 4mm
• Bead profile: 6mm x 1.5mm
• Feed rate: 850mm/min
• Screw speed: 10 rpm
• Forward Tip Wipe: 0.25”
• Wipe speed: 350.00mm/min
• Travel Lift: 0.25”
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• Scale-up produced no difference in properties

• Fiber alignment observed in printed samples
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• Agrees with tensile properties

• Scale-up produced no difference in properties

• Fiber alignment observed in printed samples
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 Polyimine formed and entangled with the surface of CNF as the presence 
of the imine prevented agglomeration and maintained fibrillar 
morphology

 Synthesis was scaled-up to produce > 3 kg of modified fibers and ~10 kg 
of composite pellets for 3D-printing trial

 Scale-up produced similar properties 

 Properties compared between compression molding, injection molding, 
and 3D-printed
 3D-printed samples and injection molded samples displayed fiber alignment
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