International Conference on Nanotechnology for Renewable Materials

Rheology and Self-Assembly of Carboxylated Cellulose Nanocrystals

Madeleine Hallman, Julia Antoniw, Behzad Zakani, Dana Grecov, Michael Kiriakou, Timothy Morse, Emily D. Cranston

> Department of Chemical & Biological Engineering University of British Columbia Vancouver, BC, Canada

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Cellulose Nanocrystals (CNCs)

- Cellulose nanocrystals are a renewable, bio-based nanomaterial with a high aspect ratio, high tensile strength, unique optical properties, and low density
- Rod-shaped particles chemically isolated from cellulose

Canadian Nanocellulose Producers

Sulfated CNCs

- CNCs are most often isolated through sulfuric acid hydrolysis which results in nanocrystals with charged sulfate half-ester surface groups
- Commercially produced
- Example applications:
 - Reinforcement additives in composite materials
 - Rheological modifiers in food, cosmetics and pharmaceuticals

Carboxylated CNCs

- Commercially produced by Anomera through oxidation using hydrogen peroxide
- Has carboxyl groups on the surface of the CNCs
- No existing work on the rheology of carboxylated CNCs
- Do they have the same useful properties as sulfated CNCs?
- Are they a potential alternative?

Rheological Applications

- Optimization of processing energy
- 3D printing viscosity not too low not too high
- Lubrication hydrodynamic lubrication
- Fast characterization of materials
- Useful rheological properties
 - Shear thinning behaviour Rheological modifiers
 - Viscoelastic properties lubrication

Types of material flow:

Self Assembly of CNCs

- The concentration above which selfassembly occurs
- CNCs arrange into chiral nematic liquid crystals
- Can be seen under polarized light

Self-Assembly Applications

- The self-assembly of sulfated CNCs are well defined^a
- Applications of CNC^b
 - Liquid-crystal phase optical filters
 - Optical films
 - Security paper
- cCNCs also self-assemble

CNC Comparison

Property	Sulfated CNCs	Carboxylated CNCs
Critical concentration through phase separation		
Critical concentration through 3-region- flow		
Change of viscoelastic behaviour		

Characterization of Anomera's Carboxylated CNCs

	Low charge cCNCs	High charge cCNCs
Charge content (mmol COOH/ kg)	159 ± 3	217 ± 4
DLS apparent size (nm)	80 ± 1	81 ±1

Methods of Determining Critical Concentration

Phase Separation:

• Liquid crystalline region can be seen under polarized light

Rheology:

• The presence of liquid crystals results in three-region flow

Critical Concentration Determination Through Phase Separation

Critical concentration: Low charge: 2.4 wt.%

Critical concentration: High charge: 3.6 wt.%

Critical Concentration Through Rheology

Critical Concentration Through Rheology – Tactoid Progression

Critical Concentration Through Rheology

3.1 wt.	%	3.2 wt.	%	3.3 wt.%		3.4 wt.%		3.5 wt.%	
n ₁	n ₂								
0.714	0.714	0.793	0.744	0.776	0.741	0.729	0.739	0.757	0.751
Δn=0	•	0.049	-	0.035	•	0.01	•	0.06	5
3.6 wt.	%	3.7 wt.	%	3.8 wt.	%	3.9 wt%	6	4.0 wt.	%
n ₁	n ₂								
0.766	0.739	0.764	0.740	0.756	0.736	0.737	0.690	0.773	0.685
Δn=0.0	27	0.024		0.02		0.047		0.088	

Tactoid Disassembly With Heating

- Some tactoids disappear quickly
- Some merge
- Others go out of focus
- By 50 °C there are no tactoids left

Tactoid Disassembly with Heating

Critical Concentration Summary – Sulfated and Carboxylated CNCs

Property	Sulfated CNC	Carboxylated CNC
Critical concentration through phase separation	3 wt.% ^a <mark>0.6 wt.%^b <mark>4.3 wt.%°</mark></mark>	2.4 wt.% (low charge) 3.6 wt.% (high charge)
Critical concentration through 3-region-flow	<mark>0.6 wt.%^b 4.8 wt.%e</mark> 0.4 wt.% ^d 1.5 wt.% ^d 3 wt.% ^e 4 wt.% ^e	4 wt.% (low charge) 5 wt.% (high charge)
Change of viscoelastic behaviour	Next	

a. Honorato-Rios, Camila, et al. Frontiers in Materials (2016): 21.

b. Qiao, Congde, et al. Food Hydrocolloids 55 (2016): 19-25.

c. Liao, Jianshan, et al. Cellulose 27.7 (2020): 3741-3757.

d. Wu, Qiang, et al. Journal of Applied Polymer Science 131.15 (2014).

e. Shafeiei-Sabet, Sadaf, et al. Rheologica Acta 52 (2013): 741-751.

Storage and Loss Modulus of cCNCs

Storage modulus > Loss modulus

Summary of Viscoelastic Properties of Sulfated and Carboxylated CNCs

Property	Sulfated CNC	Carboxylated CNC
Critical concentration through phase separation	0.6 - 4.3 wt.% ^{a,b,c}	2.4 wt.% (low charge) 3.6 wt.% (high charge)
Critical concentration through 3-region-flow	0.6 - 4 wt.% ^{b-e}	4 wt.% (low charge) 5 wt.% (high charge)
Change of viscoelastic behaviour	3 wt.% ^b	7 wt.% (low charge) 8 wt.% (high charge)

b. Qiao, Congde, et al. Food Hydrocolloids 55 (2016): 19-25.

a. Honorato-Rios, Camila, et al. Frontiers in Materials (2016): 21.

c. Liao, Jianshan, et al. Cellulose 27.7 (2020): 3741-3757.

d. Wu, Qiang, et al. Journal of Applied Polymer Science 131.15 (2014).

e. Shafeiei-Sabet, Sadaf, et al. Rheologica Acta 52 (2013): 741-751.

Summary

Property	Sulfated CNC	Carboxylated CNC	
Critical concentration through phase separation	0.6 - 4.3 wt.% ^{a,b,c}	2.4 wt.% (low charge) 3.6 wt.% (high charge)	
Critical concentration through 3-region- flow	0.6 - 4 wt.% ^{b-e}	4 wt.% (low charge) 5 wt.% (high charge)	
Change of viscoelastic behaviour	3 wt.%⊳	7 wt.% (low charge) 8 wt.% (high charge)	

- Carboxylated CNCs have a viscosity in the same range as sulfated
- Shear thinning behaviour is present
- The critical concentrations are in the same range as sulfated CNCs
- Viscoelastic properties are not in the same range

Carboxylated CNCs shows two critical concentrations: phase separation and impact on flow

- b. Qiao, Congde, et al. Food Hydrocolloids 55 (2016): 19-25.
- c. Liao, Jianshan, et al. Cellulose 27.7 (2020): 3741-3757.
- d. Wu, Qiang, et al. Journal of Applied Polymer Science 131.15 (2014).
- e. Shafeiei-Sabet, Sadaf, et al. Rheologica Acta 52 (2013): 741-751.

a. Honorato-Rios, Camila, et al. Frontiers in Materials (2016): 21.

International Conference on Nanotechnology for Renewable Materials

Madeleine Hallman Graduate Student University of British Columbia <u>mth4ll@student.ubc.ca</u>

Thank You

Acknowledgements:

- Savvas Hatzikiriakos
- Dana Grecov
- Behzad Zakani

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA